Biostatistics Weekly Seminar

Network Dependence Can Lead to Spurious Associations and Invalid Inference

Elizabeth Ogburn, PhD
Johns Hopkins University

Researchers across the health and social sciences generally assume that observations are independent, even while relying on convenience samples that draw subjects from one or a small number of communities, schools, hospitals, etc. A paradigmatic example of this is the Framingham Heart Study (FHS). Many of the limitations of such samples are well-known, but the issue of statistical dependence due to social network ties has not previously been addressed. We show that, along with anticonservative variance estimation, this can result in spurious associations due to network dependence. Using a statistical test that we adapted from one developed for spatial autocorrelation, we test for network dependence in several of the thousands of influential papers that have been published using FHS data. Results suggest that some of the many decades of research on coronary heart disease, other health outcomes, and peer influence using FHS data may suffer from spurious associations, error-prone point estimates, and anticonservative inference due to unacknowledged network dependence. These issues are not unique to the FHS; as researchers in psychology, medicine, and beyond grapple with replication failures, this unacknowledged source of invalid statistical inference should be part of the conversation.

Zoom (Link to Follow)
28 October 2020

Speaker Itinerary

Topic revision: r2 - 24 Sep 2020, AndrewSpieker

This site is powered by FoswikiCopyright © 2013-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Vanderbilt Biostatistics Wiki? Send feedback