Questions Related to Session #5 Regression and Correlation

Study

Forty four males and 44 females were randomly assigned to treatmill workouts which lasted from 306 to 976 seconds. VO₂ Max (maximum O₂ consumption normalized by body weight (ml/kg.min)) was the outcome measure.

Regression Model 1

The following common slope multiple linear regression model was estimated by least squares.

$$E(VO_2 \text{ Max}_i | X) = \beta_o + \beta_1(\text{exercise duration}_i) + \beta_2(z_{2,i})$$

where $z_{2,i} = 1$ if the *ith* participant was male, and 0 if *ith* participant was female.

Regression Analysis Summary

Table 1. The regression ANOVA table from the multiple regression analysis.

Parameter	DF	SS	MS	$F_{ m observed}$
				1
Regression	2	6044.03		
Error	84	1335.60		
Total	86	7379.62		_

Table 2. The regression parameter estimates.

Estimate	SE	$t_{ m observed}$
b	b	
-1.360	2.220	
0.059	0.004	
3.396	1.016	
	-1.360 0.059	b b -1.360 2.220 0.059 0.004

- 1) Utilize the information from Table 1 to compute the mean square regression (MSR), the mean square error (MSE) and the F-statistic ($F_{observed}$).
- 2) For a two-sided test with significance level α =0.05 we reject Ho: β_1 = β_2 =0, if $F_{observed} \ge F_{(2,84,.95)} = 3.105$. Do we reject?.
- 3) Utilizing the information from Table 1, compute the value of the coefficient of determination (R^2) , and give a simple interpretation for the R^2 value you calculated.

- 4) Utilizing the information from Table 2, compute the *t*-statistic (*t*_{observed}) for the regression parameter related to exercise duration and for the regression parameter related to gender=male.
- 5) For a two-sided test with significance level 0.05 we reject Ho: β_1 =0, and Ho: β_2 =0 if $|t_{observed}| \ge t_{(84,.975)}$ =1.990. Do we reject Ho: β_1 =0?. Do we reject Ho: β_2 =0?.
- 6) For females and males, write out the estimated regression equation for predicting the expected value VO₂ Max as a linear function of exercise duration.
- 7) What is the expected value of VO₂ Max for a female who spent 450 seconds on the treadmill? What is the expected value of VO₂ Max for a male who spent 450 seconds on the treadmill.

Regression Model 2

The following separate slopes multiple linear regression model was fit to the same data by least squares.

 $E(VO_2 \ Max_i|\ X) = \beta_o + \beta_1(exercise\ duration_i) + \beta_2(z_{2,i}) + \beta_3(z_{2,i}\ x\ exercise\ duration_i)$

where $z_{2,i} = 1$ if the *ith* participant was male, and 0 if *ith* participant was female.

Regression Analysis Summary

Table 3. The regression ANOVA table from the multiple regression analysis.

Parameter	DF	SS	MS	$F_{observed}$
Regression	3	6089.35	2029.12	130.57
Error	83	1290.27	15.54	
Total	86	7379.62		

- 7) Utilizing the information from Table 1 and Table 3, compute the extra-sum of squares F-test for the null hypothesis Ho: $\beta_3 = 0$.
- 9) For a two-sided test with significance level α =0.05 we reject Ho: β_3 =0, if $F_{observed} \ge F_{(1,83,.95)} = 3.955$. Do we reject?.
- 10) We observe from a sample of 44 paired measurements a sample correlation r = 0.35. Based on this information compute the value of the one-sample t-Test ($t_{observed}$).
- 11) For a two-sided test with significance level α =0.05 we reject Ho: ρ =0 if $|t_{\text{observed}}| \ge t_{(42,0.975)}$ = 2.08. Do we reject?.