Topics

• Basic principles applied to biomedical research.
• Examples of common experimental designs.
Focus on comparative experiments

• Def: Treatments can be allocated to the experimental units by the experimenter
 – A *treatment* is the diet, drug, device, delivery system, etc. that is:
 • under investigation and is under the control of the experimenter.
 – An *experimental unit* is the smallest division of the experimental material that can receive different treatments
Issues in entire process of design

• Which units?
• Which treatments?
• At what levels?
• Primary emphasis in statistical ED is on the question of how treatments should be allocated to units.
Requirements for a good experiment*

• Absence of systematic error
• Precision
• Range of validity
• Simplicity
• The calculation of uncertainty

*D.R. Cox, 1958, Planning of Experiments
Requirements (cont’d)

• Absence of systematic error.
 – Why? Gives an unbiased estimate of effects of treatment
 – How? Compare equivalent groups under different treatments
 • Usually achieved through randomization
Requirements (con’td)

• Precision
 – If experiment has no systematic error, experimental results should differ from `truth" only by random variation
 – Would like to make amount of random variation as small as possible.
Precision:
Example. Which experiment is more convincing as to differences between A and B?

Experiment 1

Experiment 2
Requirements (cont’d)

• Range of validity:
 – Can the conclusions from the controlled conditions be applied in a larger context?

• Simplicity
Requirements (cont’d)

• Calculation of uncertainty
 – Do the results provide an assessment of the uncertainty associated with the estimated effects of treatments?
Ideal experiment

• Have units that
 – if treated with A, respond with r_A
 – if treated with B, respond with r_B

• Why is this ideal?
 – Gives an unbiased, precise (known) estimate of effects of treatment
Goal of statistical ED

• Get as close as possible to ideal experiment, given constraints:
 – Generalizability
 – Simplicity/Feasibility
 – Finite resources
 – Variable experimental material
General Rules

• Avoid systematic error:
 – Randomize

• Get precision:
 – Make treatment comparisons based on units that are as similar as possible.
General Rules

• Precision for comparing two treatments depends on:
 – Variation of units receiving same treatment
 – Number of units treated
Common Designs: Completely Randomized Design

• Example:
• Assess effect of recombinant human growth hormone on recovery following bowel resection.
 – Treatments (diets): Chow, Standard, rHGH
 – Protocol: A total of 30 rats were randomized
 – Outcomes: Measure weight change, …, at day 8.

Check criteria for good experiment:

- Randomization
 - should provide protection against systematic biases in the treatment groups.
- Range of validity (?)
- Simple to implement.
- Precision and measuring uncertainty
ANOVA

• Results:
 - Chow: 593, 587, 576, … 593 18.0
 - Std : 525, 526, 540, … 533 16.5
 - rHGH: 818, 785, 791, … 806 16.5

• Why do these outcomes vary?
 - Units received different treatments
 - Unknown/unexplained/natural variation
Common Designs: Completely Randomized Design with Factorial Structure

• Example: Effect of levels of dietary nitrogen, phosphorous on plasma Ca concentrations

• Treatments

<table>
<thead>
<tr>
<th></th>
<th>Nitro</th>
<th>Phos</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>High</td>
<td>6</td>
</tr>
</tbody>
</table>
Completely Randomized Design with Factorial Structure

• Factorial designs:
 – Treatments are combinations of factors.
 – Allow experimenter to answer questions about the *interaction* among factors.
 • Is the effect of increasing dietary nitrogen in a low-phosphorous diet equal to the effect of increasing dietary nitrogen in a high-phosphorous diet?
 • If answer is ‘Yes’, then there is no *statistical interaction*
Why is interaction important?

• With no interaction, estimate effect of nitrogen
 – Average of groups 2 and 4 (high nitro) minus average of groups 1 and 3 (low nitro)
 – Comparison based on 12 animals vs 12 animals

• Same precision as if you had devoted all 24 animals to a study of nitrogen effect
Why is interaction important?

• With no interaction, estimate effect of phosphorous
 – Average of groups 3 and 4 (high phos) minus average of groups 1 and 2 (low phos)
 – Comparison based on 12 animals vs 12 animals
• Same precision as if you had devoted all 24 animals to a study of phosphorous effect
Why is interaction important?

• With no interaction, factorial leads to a “2 for 1” efficiency:

• 24 animals gives same information as if had done two separate experiments of 24 animals each
What if there is interaction present?

- Example: Weight gains

<table>
<thead>
<tr>
<th>Trts</th>
<th>Nitro</th>
<th>Phos</th>
<th>Avg Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>Low</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
<td>Low</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>High</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>High</td>
<td>42</td>
</tr>
</tbody>
</table>

- Adding nitrogen to diet low in phosphorus doesn’t make much difference
Advantage of Factorials

• Interaction present:
 – Best way to discover this is with a factorial

• Interaction absent:
 – 2 for 1 efficiency
Common design: randomized block designs

- Often called a “variance reduction design”
- Group units into “blocks” such that units within blocks are relatively similar to each other
Common design: randomized block designs

• Example.
 – 10 animals assigned to each of three diets
 – Outcome: Weight change at day 8
• Line up 30 animals according to initial wgt

• A1, A2, A3, A4, A5, A6, ..., A28, A29, A30
• Block 1 Block 2 Block 10
Common design: randomized block designs

- Randomly assign diets to animals *within blocks*
 - Compares diets based on groups that are similar
 - Variability in units treated alike can be small
Common design: randomized block designs

• Can lead to highly efficient designs
 – E.g., a RB design that gives same precision of a CR design more than 2 times as large.