BIOS 312: MODERN REGRESSION ANALYSIS

James C (Chris) Slaughter

Department of Biostatistics Vanderbilt University School of Medicine james.c.slaughter@vanderbilt.edu

biostat.mc.vanderbilt.edu/CourseBios312

Contents

3	S Simple Linear Regression							
3.1 General Regression Setting								
		3.1.1	Two variable setting	3				
		3.1.2	Regression versus two sample approaches	6				
		3.1.3	Guiding principle	6				
3.2 Motivating Problem: Cholesterol and Age								
		3.2.1	Definitions	6				
		3.2.2	Simple Regression Model	7				
		3.2.3	Approximate Interpretation	10				
		3.2.4	Estimates and Interpretation	10				
		3.2.5	Uses of Regression	10				
		3.2.6	Linear Regression Inference	11				
	3.3	Simple	e Linear Regression	12				
		3.3.1	Ingredients	12				

Chapter 3

Simple Linear Regression

3.1 General Regression Setting

3.1.1 Two variable setting

- · Many statistical problems examine the association between two variables
 - Outcome variable (response variable, dependent variable)
 - Grouping variable (covariate, predictor variable, independent variable)
- Compare distribution of the outcome variable across levels of the grouping variable
 - Groups are defined by the grouping variable
 - Within each group, the grouping variable is constant
- In intro course, statistical analysis is characterized by two factors
 - Number of groups (samples)

- If subjects in groups are independent
- In the two variable setting, statistical analysis is more generally characterized by the grouping variable. If the grouping variable is...
 - Constant: One sample problem
 - Binary: Two sample problem
 - Categorical: k sample problem (e.g. ANOVA)
 - Continuous: Infinite sample problem (analyzed with regression)
- Regression thus extends the one- and two-sample problems up to infinite sample problems
 - Of course, in reality we never have infinite samples, but models that can handle this case are the ultimate generalization
 - * Continuous predictors of interest
 - * Continuous adjustment variables

Example: Cholesterol by Age

3.1.2 Regression versus two sample approaches

- With a binary grouping variable, regression models reduce to the corresponding two variable methods
- · Linear regression with a binary predictor
 - t-test, equal variance: Classic linear regression
 - t-test, unequal variance: Linear regression with robust standard errors (approximately)
- · Logistic regression with a binary predictor
 - (Pearson) Chi-squared test: Score test from logistic regression
- · Cox (proportional hazards) regression with a binary predictor
 - Log-rank test: Score test from Cox regression

3.1.3 Guiding principle

Everything is regression

3.2 Motivating Problem: Cholesterol and Age

3.2.1 Definitions

- · Is there an association between cholesterol and age?
 - Scientific question: Does aging effect cholesterol?
 - Statistical question: Does the distribution of cholesterol differ across age groups?

- * Acknowledges variability in the response (cholesterol)
- * Acknowledges cause-effect relationship is uncertain
 - · Association does not imply causation
 - · Differences could be due to calendar time of birth rather than age
- · Continuous response variable: Cholesterol
- · Continuous grouping variable (predictor of interest): Age
 - An infinite number of ages are possible
 - We will not sample every possible age

3.2.2 Simple Regression Model

- Attempt to answer scientific question by assessing linear trends in average cholesterol
- Estimate the best fitting line to average cholesterol within age groups
 - $-E[Chol|Age] = \beta_0 + \beta_1 \times Age$
 - The expected value of cholesterol given age is modeled using an intercept (β_0) and slope (β_1)
- · An association exists if the slope is nonzero
 - A non-zero slope indicates that the average cholesterol will be different across different age groups

Cholesterol by Age with lowess line

Cholesterol by Age w/ lowess and LS line

3.2.3 Approximate Interpretation

- The simple regression model produces an easy to remember (but approximate) rule of thumb.
 - "Normal cholesterol is 200 + one-third of your age"

$$-E[\text{Chol}|\text{Age}] = 200 + 0.33 \times \text{Age}$$

3.2.4 Estimates and Interpretation

Stata output

regress chol age

. regress cm	or age							
Source		df		MS		Number of obs		301
Model Residual		1 299	1281. 235.3	08911 30724		F(1, 299) Prob > F R-squared Adj R-squared	=	0.0203 0.0179
	71644.9756		238.8			-		15.34
chol	 Coef. +				P> t	2 /	In	terval]
age _cons	.3209091	.1375	408	2.33 19.70	0.020	.0502384 182.9291		5915798 23.5227

•
$$E[\text{Chol}|\text{Age}] = 203.2 + 0.321 \times \text{Age}$$

3.2.5 Uses of Regression

- Borrowing information
 - Use other groups to make estimates in groups with sparse data
 - * Intuitively, 67 and 69 year olds would provide some relevant information about 68 year olds

- Assuming a straight line relationship tells us about other, even more distant, individuals
- * If we do not want to assume a straight line, we may only want to borrow information from nearby groups
 - Locally weighted scatterplot smooth line (lowess) added to the previous figures
 - · Splines discussed in future lectures
- Do not want to borrow too much information.
 - * Linear relationship is an assumption, with often low power to detect departures from linearity
 - * Always avoid extrapolating beyond the range of the data (e.g. ages under 65 or over 100)
- Defining "Contrasts"
 - Define a comparison across groups to use when answering scientific questions
 - If the straight line relationship holds, the slope is the difference in mean cholesterol levels between groups differing by 1 year in age
 - If a non-linear relationship, the slope is still the average difference in mean cholesterol levels between groups differing by 1 year in age
 - * Slope is a (first order or linear) test for trend

3.2.6 Linear Regression Inference

- Regression output provides
 - Estimates

- * Intercept: Estimated mean cholesterol when age is 0
- * Slope: Estimated average difference in average cholesterol for two groups differing by 1 year in age
- Standard errors
- Confidence intervals
- P-values for testing ...
 - * Intercept is zero (usually unimportant)
 - * Slope is zero (test for linear trend in means)

Interpretation

– From linear regression analysis, we estimate that for each year difference in age, the difference in mean cholesterol is 0.32 mg/dL. A 95% confidence interval (CI) suggests that this observation is not unusual if the true difference in mean cholesterol per year difference in age were between 0.05 and 0.32 mg/dL. Because p=0.02, we reject the null hypothesis that there is no linear trend in the average cholesterol across age groups using a significance level, α , of 0.05.

3.3 Simple Linear Regression

3.3.1 Ingredients

- · Response
 - The distribution of this variable will be compared across groups
 - * Linear regression models the mean of the response variable

- Log transformation of the response corresponds to modeling the geometric mean
- Notation: Is is extremely common to use Y to denote the response variable when discussing general methods

Predictor

- Group membership is measured by this variable

Notation

- \ast When not using mnemonics, will be referred to as the X variable in simple linear regression (linear regression with one predictor)
- * Later, when we discuss multiple regression, will refer to X_1, X_2, \dots, X_p when there are up to p predictors

Regression Model

- We typically consider a "linear predictor function" that is linear in the modeled predictors
 - st Expected value (i.e. mean) of Y for a particular value of X

$$* E[Y|X] = \beta_0 + \beta_1 \times X$$

- In a deterministic world, a line is of the form y = mx + b
 - \ast With no variation in the data, each value of y would like exactly on a straight line
 - * Intercept b is values of y when x = 0
 - * Slope m is the difference in y for a one unit difference in x
- Statistics in not completely deterministic. The real world has variability

- * Response with groups is variable
 - · Randomness due to other variables (?)
 - · Inherent randomness
- * The regression line thus describes the central tendency of the data in a scatterplot of the response versus the predictor
- Interpretation of regression parameters
 - Intercept β_0 : Mean Y for a group with X=0
 - * Often is not of scientific interest
 - * May be out of the range of data, or even impossible to observe X=0
 - Slope β_1 : Difference in mean Y across groups differing in X by 1 unit
 - \ast Usually measures association between Y and X

$$*E[Y|X] = \beta_0 + \beta_1 \times X$$