Bios 312:
Modern Regression Analysis

Final Examination
April 27, 2010

Name: ________________________________

Instructions: Please provide concise answers to all questions. Questions are of varying levels of difficult, so you may find it advantageous to skip questions you find especially difficult, and return to these questions at the end of the exam.

You are allowed up to six (6) pages of your own notes to assist you when taking the exam.

You may use a calculator to assist with arithmetic. When making intermediate calculations, always use at least four significant digits; report at least three significant digits.

If you come to a problem that you believe cannot be answered without making additional assumptions, clearly state the reasonable assumption that you make, and proceed.

Please adhere to the following pledge. If you are unable to truthfully sign the pledge for any reason, turn in your paper unsigned and discuss the circumstances with the instructor.

PLEDGE: On my honor, I have neither given nor received unauthorized aid on this examination

--

This exam consists of
• 12 total pages including the Appendix of Results
• There are 120 total points
 o Question 1: parts (a) – (n), 70 points
 o Question 2: parts (a) – (c), 15 points
 o Question 3: parts (a) – (b), 10 points
 o Question 4: parts (a) – (d), 25 points
All problems make use of the University salary dataset we have discussed this quarter. Recall that the dataset contains the average monthly salary for each faculty member over the years 1976 to 1995 for each faculty member still employed at the University in 1995. The variable names in the dataset include:

- id: Subject ID
- deg: Highest degree obtained (PhD, Professional, or Other)
- yrdeg: Year of degree (2 digits)
 - Note that this variables is coded using 2 digits, not 4 (e.g. 1980 is coded as 80)
- field: Arts, Professional (e.g. Business, Law, Engineering), and Other
- startyr: Starting year (also 2 digits, not 4 digits)
- year: Year of data (1976 to 1995)
- rank: Rank of faculty in given year (Assist, Assoc, or Full)
- admin: Indicator variable for administrative duties (0=none, 1=admin)
- salary: Average monthly salary in the given year (dollars)
- male: Indicator for male gender (0=female, 1=male)

In addition to these variables, I created the following indicator variables

- rankassoc: Indicator variable for rank of Associate Professor (0=Asst/Full, 1=Assoc)
- rankfull: Indicator variable for rank of Full Professor (0=Asst/Assoc, 1=Full)
- degother: Indicator variable for degree of Other (0=PhD/Professional, 1=Other)
- degprof: Indicator variable for degree of Professional (0=PhD/Other, 1=Professional)

I also created the following variables to model interaction between administrative duties and degree

- adminother: admin*degother
- adminprof: admin*degprof

And the log transformed version of salary

- logsalary = log(salary)
Question 1 (70 points, 5 points each). Consider the following regression model based on the 1995 salary data. Salary (response) was regressed on the predictors male, yrdeg, rankassoc, rankfull, degother, degprof, admin, adminother and adminprof using classical linear regression. For all parts of question 1, assume that the model can be used to provide valid answers to all questions. Regression output is given in the Appendix. Note that you will not use all of the results in the appendix to answer the following questions.

1.a) What is the interpretation of the intercept in this model? Give a precise interpretation and indicate if it has any scientific meaning.

1.b) What is your best estimate of the expected monthly salary for a male, full professor with a PhD degree who received his degree in 1970 and has no administrative duties?

1.c) What is your best estimate of the expected monthly salary for a female, full professor with a PhD degree who received her degree in 1970 and has no administrative duties?

1.d) What is your best estimate for the difference in expected monthly salary for a male, full professor with a PhD degree who received in 1970 and has no administrative duties compared to a female, full professor with a PhD degree received in 1970 and has no administrative duties?
1.e) Based on the output, are you able to give a 95% confidence interval for the difference in salary you report in part (d)? If so, give the 95% CI and provide an interpretation. If not, explain the difficulty with determining the CI.

1.f) Is there any evidence to suggest that there is any difference in male and female faculty members' salaries if both received a Professional degree in 1985 and are now Associate Professors with administrative duties? Explicitly give the criterion you used to answer this question.

1.g) What is your best estimate of the expected monthly salary for a female, Assistant professor with a Professional degree received in 1980 who has administrative duties?

1.h) What is your best estimate of the expected monthly salary for a female, assistant professor with a Professional degree received in 1980 who has no administrative duties?

1.i) What is your best estimate of the difference in monthly salary comparing a female, Assistant professor with a Professional degree received in 1980 who has administrative duties to a female, Assistant professor with a Professional degree received in 1980 who has no administrative duties?
1.j) What is your best estimate of the difference in monthly salary comparing a female, Assistant professor with an Other degree received in 1980 who has administrative duties to a female, Assistant professor with an Other degree received in 1980 who has no administrative duties?

1.k) Is there any statistical evidence to suggest that there exists any difference in salary between faculty who have administrative duties and faculty who do not have administrative duties? Explicitly specify the criterion you used to answer this question.

1.l) Is there any statistical evidence to suggest that there is a difference in expected salary between administrators and non-administrators varies by degree obtained? Explicitly specify the criterion you used to answer this question.

1.m) Is there any statistical evidence to suggest a difference in expected salary between a faculty member with a PhD degree and administrative duties compared to a faculty member with an Other degree and administrative duties? Explicitly specify the criterion you used to answer this question.

1.n) Suppose that instead of comparing two different faculty members with and without administrative duties, we were interested in explaining the change in an individual faculty member's salary due to administrative duties. Explain why this question is not answered with the given analysis.
Question 2 (15 points, 5 points each). Now consider the possibility that the necessary statistical assumptions for classic linear regression might not hold. For each of the following questions, specify the types of violated assumptions that might pose a problem with the statistical analysis.

2.a) Detection of a statistically significant difference in mean salary between male and female faculty

2.b) Estimation of the expected salary for a female faculty member who received her PhD degree in 1980 and is now a full professor with administrative duties.

2.c) Prediction of the central 95% range of salary for a female faculty member who received her PhD degree in 1980 and is now a full professor with administrative duties.
Question 3 (10 points, 5 points each). Explain what will happen to your parameter estimate in terms of bias and precision if the following missing data patterns were present in the salary dataset compared to an analysis where all of the data are available.

3.a) A database storage error leads to a random 20% of the observations becoming unreadable, so you do not include the missing values in your analysis.

3.b) The database error removes the first 20% of the database, which primarily contained salary data for faculty who had been at the University the longest and thus predominately had the larger salaries. You ignore this fact and analyze all available data.

Question 4 (25 points; 5, 5, 10, 5). Consider the following regression model based on the 1995 salary data. Log salary (response) was regressed on the predictors `male`, `yrdeg`, `degother`, `degprof`, and `admin` in models that either did not adjust for rank or adjusted for rank using indicator variable (`rankassoc`, `rankfull`). Regression output is given in the Appendix along with the association of gender with rank.

4.a) Provide an interpretation for the slope parameter for male in the model unadjusted for rank.
4.b) Provide an interpretation for the slope parameter for male in the fully adjusted model.

4.c) Suppose your scientific hypothesis was that gender discrimination leads to lower promotion rates which in turn lead to lower salaries for women. In other words, rank lies within your causal pathway of interest. Based on all of these analyses, provide conclusions characterizing the role of rank in answering the question regarding the effect of sex discrimination on salary disparity at this University. Summarize your conclusions as you might for a scientific paper.

4.d) Suppose the salary dataset included an additional variable indicating the reflux disease status (0=no disease, 1=diseased) for all faculty members. Further assume that having reflux disease (i.e. heartburn) is known to be very strongly associated with gender, and we can assume is not associated with salary. If we adjusted for reflux disease in this analysis, how would that impact the statistical inference (confidence interval, p-value) for gender? Should we include or exclude reflux disease status in the regression model, or will it have minimal impact so it won't really matter if we include it or not?
Appendix for Question 1: Linear Regression Results

```
. regress salary male yrdeg rankassoc rankfull degother degprof admin adminother adminpro
> f if year==95

Source | SS df MS
--------+-----------------------------------------------------
Model | 3.0990e+09 9 344335822
Residual | 3.5219e+09 1587 2219214.27
--------+-----------------------------------------------------
Total | 6.6209e+09 1596 4148443.26

Number of obs = 1597
F(  9, 1587) = 155.16
Prob > F = 0.0000
R-squared = 0.4681
Adj R-squared = 0.4650
Root MSE = 1489.7

salary | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------+-------------------------------------------------------------
  male | 461.2795 90.69516 5.09 0.000 283.3845 639.1744
  yrdeg | -23.10927 5.479962 -4.22 0.000 -33.858 -12.36054
  rankassoc | 332.3686 121.4962 2.74 0.006 94.05859 570.6786
  rankfull | 2162.968 139.3667 15.52 0.000 1889.606 2436.33
  degother | -634.0606 140.7909 -4.50 0.000 -910.2162 -357.9049
  degprof | 806.7996 169.1032 4.77 0.000 475.1105 1138.489
  admin | 1269.412 137.8633 9.21 0.000 998.9982 1539.825
  adminother | -502.2977 428.5841 -1.17 0.241 -1342.948 338.3529
  adminprof | -646.3103 403.546 -1.60 0.109 -1437.85 145.2289
_cons | 6452.953 503.4613 12.82 0.000 5465.434 7440.472
```

.`
.
.test rankassoc rankfull

 (1) rankassoc = 0
 (2) rankfull = 0

F(2, 1587) = 191.14
Prob > F = 0.0000
.
.test male rankassoc rankfull

 (1) male = 0
 (2) rankassoc = 0
 (3) rankfull = 0

F(3, 1587) = 143.15
Prob > F = 0.0000
.
.test degother degprof

 (1) degother = 0
 (2) degprof = 0

F(2, 1587) = 23.65
Prob > F = 0.0000
```
. test male degother degprof

( 1) male = 0
( 2) degother = 0
( 3) degprof = 0

F(  3,  1587) = 26.01
Prob > F = 0.0000

. test rankassoc rankfull degother degprof

( 1) rankassoc = 0
( 2) rankfull = 0
( 3) degother = 0
( 4) degprof = 0

F(  4,  1587) = 115.52
Prob > F = 0.0000

. test male rankassoc rankfull degother degprof

( 1) male = 0
( 2) rankassoc = 0
( 3) rankfull = 0
( 4) degother = 0
( 5) degprof = 0

F(  5,  1587) = 104.31
Prob > F = 0.0000

. test admin adminother adminprof

( 1) admin = 0
( 2) adminother = 0
( 3) adminprof = 0

F(  3,  1587) = 30.20
Prob > F = 0.0000

. test admin rankassoc rankfull degother degprof

( 1) admin = 0
( 2) rankassoc = 0
( 3) rankfull = 0
( 4) degother = 0
( 5) degprof = 0

F(  5,  1587) = 123.79
Prob > F = 0.0000

.
. test adminother adminprof

( 1) adminother = 0
( 2) adminprof = 0

F( 2, 1587) = 1.79
Prob > F = 0.1672

. test admin adminother adminprof rankassoc rankfull degother degprof

( 1) admin = 0
( 2) adminother = 0
( 3) adminprof = 0
( 4) rankassoc = 0
( 5) rankfull = 0
( 6) degother = 0
( 7) degprof = 0

F( 7, 1587) = 89.42
Prob > F = 0.0000

. lincom admin + adminother

( 1) admin + adminother = 0

==============================================================================
            salary |      Coef.     Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------------+---------------------------------------------
           (1) | 767.1139    407.476     1.88  0.060      -32.1339    1566.362
------------------------------

. lincom admin + adminprof

( 1) admin + adminprof = 0

==============================================================================
            salary |      Coef.     Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------------+---------------------------------------------
           (1) | 623.1012    379.4114     1.64  0.101     -121.0991    1367.302
------------------------------
Appendix for Question 4: Linear regression with robust standard errors

```
. regress logsalary male yrdeg degother degprof admin if year==95, robust
Linear regression

Number of obs = 1597
F(5, 1591) = 198.41
Prob > F = 0.0000
R-squared = 0.3603
Root MSE = .24272

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------|-------|-----------|-------|------|----------------------|
| logsalary | .0968183 | .0134115 | 7.22 | 0.000 | .0705122 -.1231245 |
| male | -.0135732 | .0066104 | -20.55| 0.000 | -.0148685 -.0122779 |
| yrdeg | -.1627948 | .0197673 | -8.24 | 0.000 | -.2015676 -.1240221 |
| degother | .0768916 | .0254583 | 3.02 | 0.003 | .0269562 .126827 |
| degprof | .2117278 | .0189419 | 11.18 | 0.000 | .1745742 .2488814 |
| admin | 9.663533 | .0556481 | 173.65| 0.000 | 9.554381 9.772684 |

. regress logsalary male yrdeg degother degprof admin rankassoc rankfull if year==95, robust
Linear regression

Number of obs = 1597
F(7, 1589) = 256.79
Prob > F = 0.0000
R-squared = 0.5212
Root MSE = .21012

| | Robust | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------|--------|-----------|-------|------|----------------------|
| logsalary | .0702362 | .0113602 | 6.18 | 0.000 | .0479535 .0925188 |
| male | -.0025019 | .0007864 | -3.18 | 0.001 | -.0040444 -.0009595 |
| yrdeg | -.0967089 | .0168383 | -5.74 | 0.000 | -.1293765 -.0636814 |
| degother | .1079014 | .0218217 | 4.94 | 0.000 | .0650991 .1507036 |
| degprof | .1604003 | .0169345 | 9.47 | 0.000 | .1271841 .1936166 |
| admin | .095727 | .0161339 | 5.93 | 0.000 | .0640809 .127373 |
| rankassoc | .3860021 | .0191854 | 20.12 | 0.000 | .3483708 .4236335 |
| rankfull | 8.607883 | .0711596 | 120.97| 0.000 | 8.468306 8.747459 |

. tabulate rank male if year==95, chi2

<table>
<thead>
<tr>
<th></th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>0 1 Total</td>
</tr>
<tr>
<td>Assist</td>
<td>145 170 315</td>
</tr>
<tr>
<td>Assoc</td>
<td>138 299 437</td>
</tr>
<tr>
<td>Full</td>
<td>126 719 845</td>
</tr>
<tr>
<td>Total</td>
<td>409 1188 1597</td>
</tr>
</tbody>
</table>

Pearson chi2(2) = 127.8958 Pr = 0.000