Chapter 10

Simple Poisson Regression

10.1 Count Data and Event Rates

- Sometimes a random variable measures the number of events occurring over some space and time interval

- Examples include
 - Number of polyps recurring in the three year interval between colonoscopies
 - Number of pulmonary exacerbations experienced by a cystic fibrosis patient in a year
 - Number of reflux events in a 24-hour period

- Count data have (in theory) no upper limit, although very large counts can be highly improbable

- When a response variable measures counts over space and time, we often
summarize by considering the event rate

– “Event rate” is the expected number of events per unit of space-time

– The rate is thus a mean count

– In most statistical problems, we know the interval of time and the volume of space sampled

 * Poisson models allow us to take into account the known interval of time/space using an “offset”

10.2 Poisson Model

10.2.1 Poisson distribution

· Often we assume that counts follow a Poisson distribution

· The Poisson distribution can be derived from the following assumptions

 – The expected number of events in an interval is proportional to the size of the interval

 – The probability that two events occur with an infinitesimally small interval of space-time is zero

 – The number of events occurring in disjoint (separate) intervals of space-time are independent

· (Note that the assumption of a constant rate with independence over space-time is pretty strong and rarely holds completely)

· Poisson distribution
Counts the events occurring at a constant rate λ in a specified time (and space) t

- Independent intervals of time and space

Probability distribution has parameter $\lambda > 0$

- For $k = 0, 1, 2, \ldots$

$$\Pr(Y = k) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$ (10.1)

- Mean: $E[Y] = \lambda t$

- Var: $V[Y] = \lambda t$

- (Mean-variance relationship, like binary data)

10.2.2 Regression Model

- When the response variable represent counts of some event, we usually model using the (log) rate with Poisson regression
 - Compares rates of response per space-time (e.g. person-years) across groups

 - “Rate ratio”

- Why not use linear regression? The reasons are primarily statistical
 - The rate is in fact a mean

 - For Poisson Y having event rate λ measured over time t
 - The mean is equal to the variance (both are λt)

 - We want to be able to account for
Different areas of space or length of time for measuring counts

Mean-variance relationship (if not using robust standard errors)

In Poisson regression, we tend to use a log link when modeling the event rate

- As in other models, a log link means that we are assuming a multiplicative modeling
 - Multiplicative model → comparisons between groups based on ratios
 - Additive model → comparisons between groups based on differences

- Log link also has the best technical statistical properties
 - Log rate is the “canonical parameter” for the Poisson distribution
 - Being the canonical parameter makes the calculus and mathematical properties easier to derive, and thus easier to understand from a theoretical perspective

Poisson regression

- Response variable is count of event over space-time (often person-years)

- Offset variable specifies amount of space-time

- Allows continuous or multiple grouping variables
 - But will also work with binary grouping variables

Simple Poisson Regression

- Modeling rate of count response Y on predictor X
\textbf{CHAPTER 10. SIMPLE POISSON REGRESSION}

\begin{align*}
\text{Distribution} & \quad \text{Pr}(Y_i = k | T_i = t_i) = \frac{e^{-\lambda_i t_i} (\lambda_i t_i)^k}{k!} \\
\text{Model} & \quad \log E[Y_i | T_i, X_i] = \log (\lambda_i T_i) = \log(T_i) + \beta_0 + \beta_1 \times X_i
\end{align*}

\begin{align*}
X_i = 0 & \quad \log \lambda_i = \beta_0 \\
X_i = x & \quad \log \lambda_i = \beta_0 + \beta_1 \times x \\
X_i = x + 1 & \quad \log \lambda_i = \beta_0 + \beta_1 \times x + \beta_1
\end{align*}

\begin{itemize}
\item To interpret as rates, exponentiate the parameters
\end{itemize}

\begin{align*}
\text{Distribution} & \quad \text{Pr}(Y_i = k | T_i = t_i) = \frac{e^{-\lambda_i t_i} (\lambda_i t_i)^k}{k!} \\
\text{Model} & \quad \log E[Y_i | T_i, X_i] = \log (\lambda_i T_i) = \log(T_i) + \beta_0 + \beta_1 \times X_i
\end{align*}

\begin{align*}
X_i = 0 & \quad \lambda_i = e^{\beta_0} \\
X_i = x & \quad \lambda_i = e^{\beta_0 + \beta_1 \times x} \\
X_i = x + 1 & \quad \lambda_i = e^{\beta_0 + \beta_1 \times x + \beta_1}
\end{align*}

\begin{itemize}
\item Interpretation of the model
\end{itemize}

\begin{itemize}
\item Intercept
\begin{itemize}
\item Rate when the predictor is 0 is found by exponentiation of the intercept from Poisson regression: e^{β_0}
\end{itemize}
\item Slope
\begin{itemize}
\item Rate ratio between groups differing in the value of the predictor by 1 unit is found by exponentiation of the slope from Poisson regression: e^{β_1}
\end{itemize}
\end{itemize}

\textbf{10.3 Example: Acid reflux and BMI}

\textbf{10.3.1 Data description}

\begin{itemize}
\item Research question: Are the number of acid reflux events in a day related to body mass index (BMI)?
\end{itemize}
• Each subject pH in the esophagus in monitored continuously for about 24 hours

• Count the number of time pH drop below 4, which is called a “reflux event”

• Analysis (statistical) goals
 – Primary goal: Determine if there is an association between BMI and acid reflux rate

 – Secondary goal: Describe the (mean) trend in reflux rates as a function of BMI

• Variables
 – Response: Number of acid reflux events

 – Offset: Number of minutes subject was monitored

 – Predictor of interest: BMI

 – Other covariates: Presence of esophagitis at baseline

10.3.2 Descriptive Plots
CHAPTER 10. SIMPLE POISSON REGRESSION

![Graph showing the relationship between BMI and reflux events per day.](image)
· Characterization of plots
 – Plots are visually similar if we consider the rate (events per day) or the raw number of events

 – First order trend: Event rate increases with increasing BMI

 – Second order trend: Event rate increase until BMI of 32 (or so) and then flattens out

 – Within-group variability
 * Hard to visualize from the plots

 * Model assumes increasing variability with increasing BMI, which looks reasonable

10.3.3 Regression commands

· As before, but need to specify the offset
 – Offset is the log of the exposure time

 – In Stata, can alternatively specify the “exposure” and it will take the log for you

· Stata
 – poisson respvar predvar, exposure(time) [robust]

 – poisson respvar predvar, offset(logtime) [robust]

· R
 – One method to fit Poisson models
* Uses the `sandwich` and `lmtest` libraries

* Must install the above two libraries using `install.packages("lmtest")` and `install.packages("sandwich")`

* `model.poisson <- glm(response ~ predictors + offset(log(time)), data=data, family="poisson")`

* `coeftest(model.poisson, vcov=sandwich)`

– Another method to fit Poisson models using the `Design` package
 * `m1 <- glmD(response ~ predictors + offset(log(time)), data=data, family="poisson", x=TRUE, y=TRUE)`

 * `bootcov(m1)` for robust (bootstrap) confidence intervals

– Can also use methods within the `gee` library

10.3.4 Estimation of the regression model

· Regression model for number of reflux events on BMI
 – Answer primary research question: Is there an *association* between BMI and the acid reflux event rate?

 – Estimate the best fitting line to (log) number of reflux events within BMI groups using an offset of log time
 * `log(Events|BMI) = \beta_0 + \beta_1 \times BMI + \log(time)`

 – An association will exist if the slope β_1 is nonzero
. poisson events bmi, offset(logmins) robust

Iteration 0: log pseudolikelihood = -11360.89
Iteration 1: log pseudolikelihood = -11360.89

Poisson regression Number of obs = 279
 Wald chi2(1) = 23.42
 Prob > chi2 = 0.0000
Log pseudolikelihood = -11360.89 Pseudo R2 = 0.0520

--
 | Robust
events | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
bmi | .0223194 .0046121 4.84 0.000 .0132799 .0313589
_cons | -3.119991 .139521 -22.36 0.000 -3.393448 -2.846535
logmins | (offset)
--

• Interpretation of output
 – log rate = -3.119991 + 0.0223194 × BMI

• Interpretation of intercept
 – Estimated event rate when BMI is 0 is found by exponentiation: $e^{-3.12} = 0.044$
 – This is the rate per 2-minute interval. This unusual time interval is an artifact of the way in pH data is sampled
 * To convert to events per day, multiply by 720 (there are 720 2-minute intervals in a day)
 * 720 × $e^{-3.12} = 31.7$ events per day

• Interpretation of slope
 – Estimated ratio of rates for two subjects differing by 1 in their BMI

 – Interpretation by exponentiation of slope
 * A subject with a 1 kg/m² higher BMI will have an acid reflux event rate that is 2.3% higher. (calc: $e^{0.0223} = 1.023$)
* We are 95% confident that the increase in event rate is between 1.3% higher and 3.2% higher

* There is a significant association between BMI and reflux events $p < 0.001$

10.4 Example: Acid reflux and BMI by esophagitis status

10.4.1 BMI modeled as a linear term

* The following results compare using a Poisson model to a linear regression model

* Both models will control for Esophagitis status, so any interpretation must involve “Holding esophagitis status constant...” (“Among subjects with the same Esophagitis status...”)

* Note the different (numerical) estimates for the coefficients and standard errors for BMI and esophagitis, but the similar statistical significance

* Also if we plot the predicted number of events per day versus BMI, the results are similar from either model
CHAPTER 10. SIMPLE POISSON REGRESSION

Stata Output

```
. poisson events bmi esop, offset(logmins) robust

Poisson regression              Number of obs =  279
                                   Wald chi2(2) = 30.30
                                   Prob > chi2 = 0.0000
Log pseudolikelihood = -11072.339  Pseudo R2 = 0.0761

------------------------------------------------------------------------------
     |     Robust
events | Coef.  Std. Err.  z    P>|z|    [95% Conf. Interval]
-------------+--------------------------------------------------------
bmi |  .0197465   .0047721   4.14  0.000       .0103934    .0290997
esop |  .2622171   .0832020   3.15  0.002       .0991442    .4252900
  _cons | -3.089033   .1423038 -21.71  0.000      -3.367944    -2.810123
logmins | (offset)
------------------------------------------------------------------------------

. gen eventsmins = events / mins
. regress eventsmins bmi esop, robust

Linear regression              Number of obs =  279
                                   F(  2, 276) = 14.16
                                   Prob > F = 0.0000
                                   R-squared = 0.0856
                                   Root MSE = 0.05102

------------------------------------------------------------------------------
     |     Robust
eventsmins | Coef.  Std. Err.  t    P>|t|    [95% Conf. Interval]
-------------+--------------------------------------------------------
bmi |  .001839   .0004618   3.98  0.000       .0009299    .0027482
esop |  .025104   .0085449   2.94  0.004       .0082826    .0419254
  _cons |  .0278461   .0129053   2.16  0.032       .0024407    .0532515
------------------------------------------------------------------------------

.* Example prediction calculations: BMI=30, with esophagitis

  - Linear regression: 0.0278461 + 0.025104 + 0.001839 × 30 = 0.108
    * Stata: adjust bmi=30 esop=1

  - Poisson regression: e^{-3.089033 + 0.2622171 + 0.01975465 × 30} = 0.107
    * Stata: adjust bmi=30 esop=1, nooffset exp
```
– Remember the above rates are for a 2-minute time interval. To convert to daily rates, multiply by 720
10.4.2 BMI modeled using splines

- Regression splines are handled more naturally in R than in Stata
 - `glm(events ~ ns(bmi,4) + esop + offset(log(mins)), data=bmi.data, family="poisson")`

 - `ns(bmi, 4)` specified a natural spline for bmi with 4 degrees of freedom

 - Later, we will discuss regression splines in Stata using `mkspline`

- Note that there is an optical illusion in the following plots
 - For both plots, it appears as if the lines are closer in the middle ranges of BMI

 - For the Poisson regression, the true distance between lines is increasing with increasing BMI

 - For the Linear regression, the true distance between lines is constant
CHAPTER 10. SIMPLE POISSON REGRESSION

Poisson Reg

Linear Reg

Predicted number of events per day

BMI

Esophagitis Pos
Esophagitis Neg

BMI

Esophagitis Pos
Esophagitis Neg
10.4.3 Comparison of modeling linear BMI to using spline function

- For all regression models, we are more confident modeling associations than predicting means

- When we use a linear term (i.e. a straight line) for the predictor, we are modeling a first-order association
 - Most power to detect this type of association

 - Always need to check that a first-order association answers the scientific question
 * Counter example: Interested in seasonal trends in air pollution. A linear effect of time would only answer if air pollution levels are increasing/decreasing over time, not how they are changing from month to month

- Flexible functions for predictors, including splines, are, in general, more useful if we care about predicting means or individual observations

- Acid reflux example: Which model you choose depends on the scientific goals
 - Primary goal: Is there an association between BMI and the rate of acid reflux?
 * Fitting the linear BMI term answers this question

 - Secondary goal: Describe the (mean) trend in reflux rates as a function of BMI
 * A priori, I would be less inclined to believe a linear function captures the true mean relationship

 * To answer this scientific question, a spline analysis is preferred