Boosting

- combines many “weak” learners → powerful “committee”
- iteratively add “weak” learners by targeting regions of the input space where predictions were poor at previous iteration
- start with example: AdaBoost.M1
AdaBoost.M1

- AdaBoost.M1: popular boosted tree-based binary classifier
- binary output: $Y \in \{-1, 1\}$
- predictors: X
- classifier: $G(X)$
- using zero-one loss:

$$\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} I(y_i \neq G(x_i))$$

- a “weak” learner has $\overline{\text{err}}$ not much better than random guess
- boosting is to sequentially apply a weak classifier to repeatedly modified versions of the data, thereby producing a sequence of weak classifiers $G_m(x)$ for $m = 1, 2, \ldots, M$.

AdaBoost.M1

- the sequence of weak classifiers is combined using weighted majority vote:

\[G(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m G_m(x) \right) \]

- weights \(\alpha_m \) are selected as part of boosting algorithm; they upweight more accurate classifiers
Final Classifier

\[G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right] \]

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.
AdaBoost.M1

- at each iteration, training data are reweighted
- initially weights $w_1, \ldots, w_N = 1/N$
- weak learner is then applied to weighted training data
- at iteration m, observations misclassified by $G_{m-1}(x)$ get larger weights, and vice versa
- observations that are repeatedly misclassified get larger and larger weights
- thus, the weak learner becomes more focused on those misclassified observations
Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights \(w_i = 1/N, \ i = 1, 2, \ldots, N \).

2. For \(m = 1 \) to \(M \):

 (a) Fit a classifier \(G_m(x) \) to the training data using weights \(w_i \).

 (b) Compute
 \[
 \text{err}_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.
 \]

 (c) Compute \(\alpha_m = \log((1 - \text{err}_m)/\text{err}_m) \).

 (d) Set \(w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))] \), \(i = 1, 2, \ldots, N \).

3. Output \(G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x) \right] \).
AdaBoost.M1

- α_m is log odds of correct classification by $G_m(x)$
- err_m always ≥ 0.5, thus $a_m \geq 0$
- Weight update:

$$w_i \leftarrow w_i \exp[\alpha_m I(y_i \neq G_m(x_i))]$$

$$w_i \leftarrow \begin{cases}
 w_i \left(\frac{1 - \text{err}_m}{\text{err}_m} \right) & \text{if } y_i \text{ misclassified} \\
 w_i & \text{otherwise}
\end{cases}$$
AdaBoost.M1 example

- let features X_1, \ldots, X_{10} be standard independent normal variates
- let target Y be deterministic such that

$$y = \begin{cases}
1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi^2_{10}(0.5) \\
-1 & \text{otherwise}
\end{cases}$$

- model is not additive in inputs
- high order interactions of inputs
- use “stump” as weak learner: a tree with just one split
FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 244-node classification tree.