Principal components regression

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, TN, USA

January 27, 2020
Overview

► Principle components regression involves creating new variables from existing ones (i.e. feature extraction)
► It is an unsupervised process – outcome data are not used
► The process consists of rotating the axes of X to better describe variability and minimize correlation between inputs
► If correlation was present, it may be possible to find a lower dimensional set of inputs that retain most of the information in the data
► Projecting points onto the eigenvectors of the estimated covariance matrix
Principal Components Analysis

- to understand principal components regression, first need principal components analysis (PCA)
- suppose we have an $n \times p$ input matrix X
- all inputs must be numeric or dummy coded
- PCA transforms X into a new matrix Z with the same number of rows and columns
- columns of Z are called principal components (PCs)
- the new, transformed inputs (columns Z_1, Z_2, etc) are no longer correlated (they’re “independent”)
- variance of Z_1 is largest, then Z_2, and so on
- variance of some Z may be very small or zero
two inputs substantially correlated
PCA creates new inputs Z_1 and Z_2 by rotating the axes.
such that new inputs Z_1 and Z_2 are not correlated
rotate entire figure 45 degrees to view Z_1 and Z_2
drop the original axes
no correlation between Z_1 and Z_2
variance of Z_1 greater than variance of Z_2
Principal components analysis

- transforming X to get Z is PCA
- if X has p columns, then Z will have p columns
- what we can do with Z makes PCA useful
- dimension reduction
- most information in Z is captured by Z_1
- maybe we can simply ignore Z_2
- if so, the dimension of (transformed) input is reduced by 1
Principal components analysis

- ignoring some PCs generally causes loss of information
- exceptions:
 - if $n \leq p$, can drop $p - n + 1$ PCs without loss of info
 - if some inputs perfectly correlated, can drop some PCs without loss of info
ignoring Z_2 would cause loss of (a little) information
when $n = p$, only $p - 1$ PCs needed; no info loss
when X_1 and X_2 perfectly correlated, only 1 PC needed; no info loss
Principal components regression

- say X is a matrix of training inputs
- dimension reduction reduces the information in X
- less information means less flexible predictor based on X
- degree of dimension reduction (i.e., how many PCs ignored) affects bias-variance tradeoff
- principal components regression is simply linear regression using PCs as inputs, and after applying some dimension reduction
- number of PCs used is the tuning parameter
Principal components regression

- for some $0 \leq M \leq p$, use only first M PCs in regression
- $y = z_M \beta_M$
- where z_M is matrix of first M PCs
- fit β_M by minimizing training error
- tune M using testing error
Code example

pca-regression-example.R