Non-Graphics Functions

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregating & Grouping Data</td>
<td>bystats, bystats2, cut2, dataRep, mApply, summary.formula, xy.group,</td>
</tr>
<tr>
<td></td>
<td>summarize</td>
</tr>
<tr>
<td>Attributes</td>
<td>comment, label, units, contents</td>
</tr>
<tr>
<td>Computations</td>
<td>matxv, nomiss, rcspline.eval, rcspline.restate, solvet, trap.rule</td>
</tr>
<tr>
<td>Data Manipulation, Recoding</td>
<td>combine.levels, Cs, cut2, first.word, interaction, Lag,</td>
</tr>
<tr>
<td></td>
<td>recode, reShape, score.binary, sedit, strmatch, subset, substi, tex, upData</td>
</tr>
<tr>
<td>Descriptive & Summary Stats</td>
<td>dataRep, describe, wtd.mean, wtd.var, wtd.rank, wtd.loess.noiter</td>
</tr>
<tr>
<td>File Import</td>
<td>cleanup.import, csv.get, getHdata, sas.get, spss.get, sasxport.get</td>
</tr>
<tr>
<td>Missing Data</td>
<td>aregImpute, fit.mult.impute, impute is.imputed, is.present, transcan</td>
</tr>
<tr>
<td>Modeling</td>
<td>areg.boot, rm.boot</td>
</tr>
<tr>
<td>Multivariate</td>
<td>pcl, rm.boot, transace, transcan, varclus</td>
</tr>
<tr>
<td>Nonparametric Methods</td>
<td>bootkm, hdquantile, hoeffd, plsmo, rcorr, rcorr.cens, rcorr.censp,</td>
</tr>
<tr>
<td></td>
<td>somers2, spearman, spearman.test, spearman2, wtd.rank</td>
</tr>
<tr>
<td>Power, Sample Size, CLs</td>
<td>ballocation, binconf, bpower, bsamsize, ciapower, confbar,</td>
</tr>
<tr>
<td></td>
<td>cpower, ftupwr, ftuss, ldBands, popower, rMultinom, samplesize.bin,</td>
</tr>
<tr>
<td></td>
<td>spower</td>
</tr>
<tr>
<td>Predictive Accuracy</td>
<td>abs.error.pred, somers2</td>
</tr>
<tr>
<td>Programming</td>
<td>do, %in%, %nin%</td>
</tr>
<tr>
<td>Statistical Inference</td>
<td>deff, gbayes, james.stein, plotCorrPrecision, t.test.cluster</td>
</tr>
<tr>
<td>Survival Analysis, Censoring</td>
<td>bootkm, event.chart, event.history, rcorr.cens, rcorr.p.cens</td>
</tr>
<tr>
<td>Table Making, LATEX</td>
<td>format.df, latex, summary.formula, tex</td>
</tr>
</tbody>
</table>
Non-Graphics Functions, continued

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>all.is.numeric, approxExtrap, calltree, contents, ddmmmyy, eip, find.matches, list.tree, mask, matchCases, prn, src, store, sys, uncbind</td>
</tr>
</tbody>
</table>

Graphics Functions

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Level (Non-Trellis)</td>
<td>bpplot, datadensity, dot.chart, drawPlot, ecdf, errbar, event.chart, event.history, histbackback, hist.data.frame, mulbar.chart, plsmo, p.sunflowers, rcspline.plot, symbol.freq</td>
</tr>
<tr>
<td>Plot Annotations</td>
<td>labcurve, minor.tick, mtitle, pstamp, putKey, putKeyEmpty</td>
</tr>
<tr>
<td>Plot Setup & Devices</td>
<td>gs.slide, mgp.axis, mgp.axis.labels, mgp.axis.labels, ps.slide, setpdf, setps, setTrellis, trellis.strip.blank, win.slide, zoom</td>
</tr>
<tr>
<td>Plot/Symbol Info</td>
<td>character.table, show.col, show.pch</td>
</tr>
<tr>
<td>Plot Symbols & Additions</td>
<td>confbar, histSpike, scat1d</td>
</tr>
<tr>
<td>Trellis High-Level Graphics</td>
<td>Dotplot, ecdf, panel.bpplot, panel.plsmo, xYplot</td>
</tr>
</tbody>
</table>

Online Help

Use `?functionname` or `help(functionname)` from the command line to get detailed documentation on (most of the) individual functions. In S-PLUS on Windows you can also click on the Help button, then click on Hmisc Library. See especially the Overview entry — from the command line type `help(Overview, library='Hmisc')`. Type `help('data.frame.create.modify.check',lib='Hmisc')` to see a detailed template the data management steps described below.

Attaching Library
Creating and Modifying Data Frames

The typical order of operations is as follows. SP \(n \) refers to search position \(n \).

1. Import external data into a data frame (while _Data\ is in SP1)

2. Make global changes to a data frame (e.g., changing variable names) (_Data\ still in SP1)

3. Change attributes or values of variables within a data frame (_Data\ or data frame in SP1)

4. Do analyses involving the whole data frame (without attaching it) (Data frame still in _Data)

5. Do analyses of individual variables (after attaching the data frame in SP2 or later)

Hmisc functions respect the 'units' (for describe, Surv) and 'label' attribute (for describe, summary.formula, and high-level plotting functions).

Here are comments for creating a data frame \(Z \) by importing from an ascii file.

Step 1: Create initial draft of data frame

```r
# S-Plus:
import.data(FileName = "/windows/temp/z.asc", FileType = "ASCII", DataFrame = "Z")
Z <- importData("/tmp/z.asc", # depending on S version colNames=Cs(id,age,fev,height,sex,smoking))
```

```r
# R: use csv.get, sas.get, sasxport.get, spss.get, read.csv, etc.
```

Step 2: Clean up data frame / make it be more efficiently stored

```r
# Needed if not using an Hmisc import function
Z <- cleanup.import(Z)
```
Step 3: Make global changes to the data frame

```r
names(Z) <- casefold(names(Z))  # names to lower case
names(Z)[6] <- 'smoke'          # assumes you know the positions!
names(Z)[names(Z)=='smoking'] <- 'smoke'
names(Z) <- edit(names(Z))
```

Step 4: Delete unneeded variables

```r
Z$x1 <- NULL
Z[c('age','sex')] <- NULL    # delete 2 variables
Z[Cs(age,sex)] <- NULL       # same thing
```

Step 5: Make changes to only a few variables without attaching

```r
Z$sex <- factor(Z$sex, 0:1, c('female','male'))
Z$smoke <- factor(Z$smoke, 0:1, c('non-current smoker','current smoker'))
units(Z$age) <- 'years'
units(Z$fev) <- 'L'
label(Z$fev) <- 'Forced Expiratory Volume'
units(Z$height) <- 'inches'
```

Method using attach (not recommended)

```r
attach(Z, pos=1, use.names=F)    # R does not have use.names
sex <- factor(sex, 0:1, c('female','male'))
smoke <- factor(smoke, 0:1, c('non-current smoker','current smoker'))
units(age) <- 'years'
units(fev) <- 'L'
label(fev) <- 'Forced Expiratory Volume'
units(height) <- 'inches'
# height <- NULL here would cause height to be deleted from Z
detach(1, 'Z2')                 # MAKE SURE DATA FRAME NAME QUOTED!
```

Better approach for steps 3-5

```r
Z2 <- upData(Z, rename=c(smoking='smoke'),
              drop=c('var1','var2'),
              levels=list(sex=list(female=0,male=1),
                           smoke=list('non-current smoker'=0,
                                       'current smoker'=1)),
              units =c(age='years', fev='L', height='inches'),
              labels=c(fev='Forced Expiratory Volume'))
```

or upData(Z, sex=factor(sex,0:1,c('female','male'))), etc.
Note: upData like cleanup.import stores variables
as efficiently as possible
Checking and Inspecting Data

page(describe(Z2), multi=T)
multi=T allows that window to persist while
control is returned to other windows

Z ← Z2; rm(Z2) # once verify Z2 OK

Next, we can use a variety of other functions to check and describe all of the variables. As we are analyzing all or almost all of the variables, this is best done without attaching the data frame. Note that `plot.data.frame` plots inverted CDFs for continuous variables and dot plots showing frequency distributions of categorical ones.

summary(Z)
basic summary function (summary.data.frame)
plot(Z) # plot.data.frame
datadensity(Z) # rug plots and freq. bar charts for all var
hist.data.frame(Z) # for R, just say hist(Z)

by(Z, Z$smoke, describe) # stratified describe

Detailed Analyses Involving Individual Variables

Analyses based on the formula language can use data= so attaching the data frame may not be required. This saves memory. Here we use the Hmisc `summary.formula` function to compute 5 statistics on height, stratified separately by age quartile and by sex.

options(width=80)
summary(height ~ age + sex, data=Z,
 fun=function(y)c(smean.sd(y),
 smedian.hilow(y,conf.int=.5)))
This computes mean height, S.D., median, outer quartiles

fit ← lm(height ~ age*sex, data=Z)
summary(fit)

For this analysis we could also have attached the data frame in search position 2. For other analyses, it is mandatory to attach the data frame unless Z$ prefixes each variable name. Important: DO NOT USE `attach(Z, 1)` or `attach(Z, pos=1, ...)` if you are only analyzing and not changing the variables, unless you really need to avoid conflicts with variables in search position 1 that have the same names as the variables in Z. Attaching into search position 1 will cause S to be more of a memory hog.
attach(Z)

Use e.g. attach(Z[,Cs(age,sex)]) if you only
want to analyze a small subset of the variables
Use e.g. attach(Z[Z$sex=='male',]) or
attach(subset(Z, sex=='male')) or
attach(subset(Z, sex=='male', c('age','race')))
to analyze a subset of the observations

summary(height ~ age + sex,
 fun=function(y)c(smean.sd(y),
 smedian.hilow(y,conf.int=.5)))

fit ← lm(height ~ age*sex)

Run generic summary function on height and fev,
stratified by sex
by(data.frame(height,fev), sex, summary)

Cross-classify into 4 sex x smoke groups
by(Z, list(sex,smoke), summary)

Plot 5 quantiles
s ← summary(fev ~ age + sex + height,
 fun=function(y)quantile(y,c(.1,.25,.5,.75,.9)))

plot(s, which=1:5, pch=c(1,2,15,2,1),
 main='A Discovery', xlab='Z')

pch=c('=','[','o',']','='),
Use the nonparametric bootstrap to compute a
0.95 confidence interval for the population mean fev
smean.cl.boot(fev) # in Hmisc

Use the Statistics ... Compare Samples ... One Sample
menus to get a normal-theory-based C.I. Then do it
more manually. The following method assumes that
there are no NAs in fev

sd ← sqrt(var(fev))
xbar ← mean(fev)
xbar
sd
n ← length(fev)
qt(.975,n-1)
prints 0.975 critical value of t dist. with n-1 d.f.

xbar + c(-1,1)*sd/sqrt(n)*qt(.975,n-1)
prints confidence limits

Fit a linear model
fit ← lm(fev ~ other variables ...)

6
detach()

The last command is only needed if you want to start operating on another data frame and you want to get Z out of the way.

For More Information

The central web page for the Hmisc library, for updates to this card, and for information on statistical methodology is biostat.mc.vanderbilt.edu/s/Hmisc.

Please communicate corrections and improvements to Frank Harrell at f.harrell@vanderbilt.edu.

Version: March 30, 2004