How to make a confidence/credible interval for nearly any quantity!

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine

August 4, 2017
Big ideas

- Quantifying statistical uncertainty is important.
- Sometimes interested in unusual quantities:
 - error variance
 - random effects variances
 - “nuisance” parameters
 - functions of parameters
What about bootstrap?

The bootstrap works but has drawbacks:

- computationally intense
- estimability issues (e.g., sparse categories)
- Monte carlo error (i.e., not deterministic)
- no Bayesian version
- not good for very small samples; \(\binom{2n-1}{n-1} \) possible bootstraps
- complicated for correlated data
Another solution.

This talk will focus on approximations:

- computationally easy (no bootstrap or MCMC)
- no estimability issues
- deterministic
- applies in likelihood and Bayesian context
- works for very small samples (but may not be very good)
- not complicated for correlated data
Likelihood vs posterior

Quantifying uncertainty is based on:

- likelihood function: \(L(\theta|D) \)
- posterior density: \(P(\theta|D) \propto L(\theta|D)P(\theta) \)
- generic: \(P(\theta) \)
Taylor approximation

The log of $P(\theta)$ can be approximated using a second-order Taylor approximation about θ' as follows:

$$\log P(\theta) \approx \log P(\theta') + G(\theta')(\theta - \theta') + \frac{1}{2}(\theta - \theta')^T H(\theta')(\theta - \theta')$$

where the gradient of $\log P(\theta)$ at θ' is

$$G(\theta') = \left. \frac{\partial \log P(\theta)}{\partial \theta^T} \right|_{\theta=\theta'}$$

and the Hessian of $\log P(\theta)$ at θ' is

$$H(\theta') = \left. \frac{\partial^2 \log P(\theta)}{\partial \theta^T \partial \theta} \right|_{\theta=\theta'}$$
Normal approximation

If we let \(\theta' = \hat{\theta} \) be the value that maximizes \(\log P(\theta) \) (i.e., a maximum likelihood estimate [MLE] or maximum a posteriori [MAP] estimate) and exponentiate both sides, we have the following:

\[
P(\theta) \approx K \exp \left[-\frac{1}{2} (\theta - \hat{\theta})^T \hat{\Sigma}^{-1} (\theta - \hat{\theta}) \right]
\]

where \(K \) is a constant with respect to \(\theta \) and \(\hat{\Sigma}^{-1} = -H(\theta') \). From this, we draw the following conclusions/connections:

- The posterior density can be approximated by a multivariate normal density with mean \(\hat{\theta} \) and variance-covariance \(\hat{\Sigma} \) (this is identical to a Laplace approximation).
- It’s no coincidence that the approximate sampling distribution of the MLE is the same multivariate normal distribution.
- Easy confidence/credible intervals: \(\hat{\theta}_j \pm 1.96 \sqrt{\hat{\Sigma}_{jj}} \)
In both the likelihood (MLE) and Bayesian context, our uncertainty about θ is captured (approximately) by the multivariate normal density with mean $\hat{\theta}$ and variance-covariance $\hat{\Sigma}$.
What about functions of parameters?

Say we want to quantify uncertainty about a function $g(\theta)$. Approximate (essentially the delta method):

$$g(\theta) \approx g(\theta') + G(\theta')(\theta - \theta')$$

Since uncertainty about θ (Bayesian) or $\theta' = \hat{\theta}$ (likelihood) is captured by the normal distribution, then the same is approximately true for $g(\theta)$. In both the likelihood and Bayesian case, uncertainty about $g(\theta)$ is quantified by the following:

$$g(\hat{\theta}) \sim N(\hat{\theta}, G(\hat{\theta})\Sigma G(\hat{\theta})^T)$$

So, a 95% CI is given as follows

$$g(\hat{\theta}) \pm 1.96 \sqrt{G(\hat{\theta})\Sigma G(\hat{\theta})^T}$$
Examples in R!

▶ computing likelihood can be hard (e.g., mixed effects models)
▶ some model fitting routines give us parts for free (e.g., vcov)
▶ usually necessary to code likelihood for Bayesian models