```r
> .Test <- chisq.test(.Table, correct=FALSE)

> .Test

Pearson's Chi-squared test

data: .Table
X-squared = 13.759, df = 1, p-value = 0.0002078

> .Test$expected # Expected Counts

<table>
<thead>
<tr>
<th>PTL</th>
<th>no PTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBW</td>
<td>9.36508</td>
</tr>
<tr>
<td>nLBW</td>
<td>20.63492</td>
</tr>
</tbody>
</table>
```

```r
> .Test <- chisq.test(.Table, correct=FALSE)

> .Test

Pearson's Chi-squared test

data: .Table
X-squared = 5.0048, df = 2, p-value = 0.08189

> .Test$expected # Expected Counts

<table>
<thead>
<tr>
<th>White</th>
<th>Black</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBW</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>nLBW</td>
<td>73</td>
<td>15</td>
</tr>
</tbody>
</table>
```
Enter Two-Way Table

Number of Rows: 2
Number of Columns: 2

Enter counts:
- Drug A: 2, 3
- Drug B: 1, 9

Output Window

> fisher.test(.Table)

Fisher's Exact Test for Count Data

data: .Table
p-value = 0.2418
alternative hypothesis: true odds ratio is not equal to
95 percent confidence interval:
 0.2042015 390.8941497
sample estimates:
 odds ratio
 5.206688

Chi-squared distribution

Density Function

DF = 1
DF = 2

x

0 2 4 6 8 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2