How to interpret scientific & statistical graphs

Theresa A Scott, MS
Department of Biostatistics
theresa.scott@vanderbilt.edu
http://biostat.mc.vanderbilt.edu/TheresaScott

A brief introduction

• **Graphics:**
 – One of the most important aspects of presentation and analysis of data; help reveal structure and patterns.

• **Graphical perception (ie, interpretation of a graph):**
 – The visual decoding of the quantitative and qualitative information encoded on graphs.

• **Objective:**
 – To discuss how to interpret some common graphs.
Sidebar: Types of variables

• Continuous (quantitative data):
 – Have any number of possible values (eg, weight).
 – *Discrete numeric* – set of possible values is a finite (ordered) sequence of numbers (eg, a pain scale of 1, 2, …, 10).

• Categorical (qualitative data):
 – Have only certain possible values (eg, race); often not numeric.
 – *Binary (dichotomous)* – a categorical variable with only two possible value (eg, gender).
 – *Ordinal* – a categorical variable for which there is a definite ordering of the categories (eg, severity of lower back pain as none, mild, moderate, and severe).

Graphs for a single variable’s distribution
Histograms

- Continuous variable.
- Values are divided into a series of intervals, usually of equal length.
- Data are displayed as a series of vertical bars whose heights indicate the number (count) or proportion (percentage) of values in each interval.
- What is the overall shape? Is it symmetric? Is it skewed?
 - Affected by the size of the interval.
- Is there more than one peak?
- What is the range of the intervals? Is the shape wide or tight (i.e., what's the variability?)
- Look for concentration of points and/or outliers, which can distort the graph.

Boxplots

- Continuous variable.
- Displays a numerical summary of the distribution.
 - Most include the 25th, 50th (median), and 75th percentiles.
 - Optionally includes the mean (average).
 - May extend to the min & max or may use a rule to indicate outliers.
 - Graphed either horizontally or vertically.
- Interpretation:
 - What statistics are displayed?
 - Most often, the central box includes the middle 50% of the values.
 - Whiskers (and outliers) show the “range”.
 - Symmetry is indicated by box & whiskers and by location of the median (and mean).
Boxplot with raw data

- Going one step beyond just a boxplot.
 - Boxplot is overlaid with the raw values of the continuous variable.
 - Therefore, displays both a numerical summary as well as the actual data.
 - Gives a better idea the number of values the numerical summary (i.e., boxplot) is based on and where they occur.

- Raw values are often “jittered” – that is, in order to visually depict multiple occurrences of the same value, a random amount of noise is added in the horizontal direction (if boxplot is vertical; in the vertical direction if the boxplot is horizontal).

- Look for concentration of points and (as before) outliers.

Barplots (aka, bar charts)

- Categorical variable.

- Data are displayed as a series of vertical (or horizontal) bars whose heights indicate the number (count) or proportion (percentage) of values in each category.
 - Visual representation of a table.
 - How do the heights of the bars compare? Which is largest? Smallest?
Dot plots (aka, dotcharts)

- Categorical variable.
- Alternative to a barplot (bar chart).
- Height of the (vertical) bars are indicated with a dot (or some other character) on a (often horizontal dotted) line.
 - Line represents the counts or percentages.
- Same interpretation as barplot (bar chart).

Graphs for the association/relation between two variables
Side-by-side boxplots

- A continuous variable and a categorical variable.
- Displays the distribution of the continuous variable within each category of the categorical variable.
- Width of the boxes can also be made proportional to the number of values in each category.
- Here, side-by-side boxplots are overlaid with the raw values.
- How does the symmetry of each boxplot differ across categories? How do they compare to the boxplot of the continuous variable ignoring the categorical variable? Is there a concentration of points and/or outliers in one particular category? Is the number of values in each category fairly consistent?

Barplots

- Two categorical variables.
 - Visual representation of a two-way table.
- Bars are most often “nested”.
 - The count/proportion of the 2nd variable’s categories is displayed within each of the 1st variable’s categories.
 - Allows you to compare the 2nd variable’s categories (1) within each of the 1st variable’s categories, and (2) across the 1st variable’s categories.
- Bars can also be “stacked”.
 - A single bar is constructed for each category of the 1st variable & divided into segments, which are proportional to the count/percentage of values in each category of the 2nd variable.
 - Counts should sum to the no. of values in the dataset; percentages should sum to 100%.
 - Unlike “side-by-side”, segments do not have a common axis – makes difficult to compare segment sizes across bars.
Dot plots

- Two categorical variables.
 - Alternative visual representation of a two-way table.

- Like barplots, can be “nested”.
 - Have different lines for each category of the 2nd variable grouped for each category of the 1st variable.

- Can also be “stacked”.
 - Categories of the 2nd variable are shown on a single line; one line for each category of the 2nd variable; 1st variable’s categories are distinguished with different symbols.
 - Unlike “stacked” barplots, do have a common axis for comparisons.

- Same interpretation as barplot (bar chart).
 - Same comparisons – within and across categories.

Scatterplots

- Two continuous variables.
- Usually, the “response” variable (ie, outcome) is plotted along the vertical (y) axis and the explanatory variable (ie, predictor; risk factor) is plotted along the horizontal (x) axis.
 - Doesn’t matter if there is no distinction between the two variables.
- Each “subject” is represented by a point.
- Often include lines depicting an estimate of the linear/non-linear relation/association, and/or confidence “bands”.

- What to look for:
 - Form of the association/relation: Linear? Non-linear (ie, a curve)?
 - Strength of the relation/association: How tightly clustered are the points (ie, how variable is the relation/association)?
 - Outliers
 - “Lurking” variables: A 3rd (continuous or categorical) variable that is related to both continuous variables and may confound the association/relation.
 - Often incorporated into graph – see “Graphs for multivariate data” slides.

http://www.stat.sfu.ca/~cschwarz/Stat-201/Handouts/node41.html
Example Scatterplots

Graphs for multivariate data (ie, more than two variables)
(More complex) Scatterplots

- Two continuous variables and a categorical variable.

- Often, categorical variable is a confounder – the association/relation between the two continuous variables is (possibly) different between the categories of the categorical variable.

- Categorical variable incorporated using different symbols and/or line types for each category.

- What to look for:
 - Same as mentioned for general scatterplot.
 - Does the association/relation between the two continuous variables differ between the categories of the categorical variable? If so, how?

Examples of other graphs you might encounter
Modified “side-by-side boxplot”
(great alternative to a “dynamite plot” – next slide)

![Boxplot Diagram]

Mean and SD of Age Across Stage of Disease

- Stage 1
- Stage 2
- Stage 3
- Stage 4

Histological stage of disease

“Dynamite plot”

(often, height of bar = mean; error bar = standard deviation)

IMPORTANT

- Even though commonly seen, not a good graph to generate.
 - Interested in the height of the bar (rest of the bar is just unnecessary ink).

- Have no idea how many values the mean and standard deviation are based on (often quite small) or how the raw values are distributed.

- Both affect the values of the mean and standard deviation.

- Bars can also be “hanging”, which may represent negative values – very confusing.

![Dynamite Plot Diagram]

Type of mouse

- Wild Type
- Knockout

Expression of protein

- 0.0
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
Survival & Hazard plots

Each step down represents one or more “deaths”; “+” signs represent censoring.

Each step up represents one or more “deaths”; “+” signs represent censoring.

“Spaghetti” & Line plots

Each line plots the raw data points of a single “subject”.

Each line plots summary measures (eg, mean) from a group of subjects.
WARNING:
Very easy for a graph to lie

• What are the limits of the axis/axes? Is the scale consistent?

• How do the height and width of the graph compare to each other? Is the graph a square? A rectangle (i.e., short & wide; tall & skinny)?

• If two or more graphs are shown together (e.g., side-by-side, or in a 2x2 matrix), do all of the axes have the same limits? Same scale? Do they have the same relative dimensions?

• Are there two x- or y-axes in the same graph? If so, do they have the same scale?

• Can you get a feel for the raw data? The number of data points?

• Does a graph of a continuous variable show outliers? Does the data look too “pretty”?

General steps

• Do I understand this graph?
 – If NO: (1) it might be a really bad graph; or (2) it might be a type of graph you don’t know about.

• Carefully examine the axes and legends, noting any oddities.

• Scan over the whole graph, to see what it is saying, generally.

• If necessary, look at each portion of the graph.

• Re-ask “Do I understand this graph?”
 – If YES, what is it saying?
 – If NO, why not?