SVGMapping: an R package to map omic data sets onto pathways templates

Raphaël Champeimont\(^1\), Christophe Leplat\(^1\), Franck Chauvat\(^1\), Jean-Christophe Aude\(^1\),\(^*\)

\(^1\) CEA, ibiTecS, Integrative Biology Laboratory, F-91191 Gif-sur-Yvette, France
\(^2\) Génomique des Microorganismes, UMR 7238 CNRS-UPMC, 15 Rue de l’Ecole de Médecine, 75006 Paris, France
\(^*\) Contact author: jean-christophe.aude@cea.fr

Keywords: Vizualisation, Pathways, Microarrays, High throughput assays

High-throughput omic technologies are now commonly used in large-scale experimental biology. The main characteristic of these omic approaches is that they usually produce large amounts of data. Results obtained through these analyses are mostly interpreted or assessed in terms of given hypotheses. In most cases, huge amount of results need to be transformed (eg using classification methods), integrated with other biological knowledge (eg pathways), and explored using mainstream or dedicated visualisation tools. Then, they can be meaningfully interpreted by biologists. Visualisation is crucial for an optimal understanding of the results emerging from the concerted analysis of shared material between experimental and computational researchers.

Directed visualisation methods [2] use prior knowledge in their process. In biology this knowledge is often depicted by networks. For example, Momin et al. [3] designed a method that combines a visualisation method and a prediction process to map transcriptomic data with predicted metabolite pools into pathways. Here we report SVGMapping, an R package to map omic experimental data onto custom-made templates which can be used to depict metabolic pathways, cellular structures or biological processes. SVGMapping [1] allows the modification of color, opacity or shape of given graphical elements. It can be applied several times on the same template to combine various omic data types (eg protein and metabolite concentrations). This package has been designed to integrate the wealth of data generated by various strains (eg mutants vs wild-type), growth conditions (eg before vs after stress) or kinetic experiments. Both templates and output graphics comply with the Scalable Vector Graphics (SVG) format. This format can be converted in popular graphic formats (eg PNG or PDF) or displayed within a modern browser. Using the latter, SVGMapping can be setup to encapsulate annotations as tooltips and hyperlinks to provide an interactive user-friendly experience.

References

