Contents

13 Model Choice in Multiple Regression 5

13.1 Overview .. 5

13.2 ANOVA versus Linear Continuous Models 5

13.3 Choice of Transformation ... 9

13.4 Example: Beta Carotene Supplements 12

13.4.1 Overview ... 12

13.4.2 Methods for modeling dose response 14

13.4.3 ANOVA analysis .. 16

13.4.4 Binary dose: Placebo versus Active 21

13.4.5 Linear, continuous dose 23

13.4.6 Polynomial models of dose 25

13.4.7 Highest order polynomial models versus ANOVA 27

13.4.8 Threshold at 0 and Linear Term 28

13.5 Data driven model selection 32

13.5.1 Simulation ... 32
13.5.2 Post hoc adjustments for multiple comparisons 34
Chapter 13

Model Choice in Multiple Regression

13.1 Overview

· There are many different ways we can model predictors

· What alternative models will make scientific sense

· What is the impact of letting the data drive the selection of a model

· I am going to discuss in terms of a clinical trial where we have replicates at dose levels
 – We can find dose-specific means and compare modeling approaches

13.2 ANOVA versus Linear Continuous Models

· Compare power of linear continuous models versus ANOVA as a function
 – of trend in means AND
– standard errors within groups

• ANOVA (dummy variables)
 – Uses indicator variables for every dose (group) level
 ∗ Again, I am thinking about “dose” in a general sense that could including covariates like age, cholesterol, blood pressure, etc.

 ∗ Traditionally, dose would just be dose of some treatment

 – Fits group means exactly
 ∗ One way ANOVA: One categorical predictor

 ∗ Two way ANOVA: Two categorical predictors
 · Fit with the interactions to get group means exactly

 – Does not mix random error with systematic error
 ∗ Systematic error: Error due to differences from sample means from predicted means

 ∗ Random error: Error that cannot be explained after controlling for dose

 – ANOVA ignores the ordering of the groups, so it gains no power from trends
 ∗ e.g. does not assume that the difference between dose=15 and dose=30 group is similar to the difference between the dose=30 and dose=45 groups

 ∗ In fact, the same level of significance is gained no matter what permutation of dose groups is used

• Linear continuous models
 – Borrows information across groups
 Accurate and efficient if the model is correct

- If model is incorrect, mixes random and systematic error
 - Will have some systematic error because the means are not predicted exactly

- Can gain power from ordering of groups in order to detect a trend
 - But, no matter how low the standard error is, if there is no trend in the mean, there is no statistical significance
CHAPTER 13. MODEL CHOICE IN MULTIPLE REGRESSION

Linear: High power; ANOVA: High Power

Linear: Mod power; ANOVA: Low Power

Linear: No power; ANOVA: High Power

Linear: No power; ANOVA: Low Power
Other options for modeling continuous predictors
- Combinations of linear trends and indicator variables
- Splines
- Fractional polynomials
- etc.

13.3 Choice of Transformation

- The exact form used to model predictors should be based on scientific (first) and statistical (second) criteria

- Scientific issues
 - The form used to model predictors must address the specific scientific question
 - Should be the next logical step in the process of investigating the overall goal
 - Remember binary search from the Scientist game
 - First, establish some sort of an association
 - Second, detect a first order trend
 - Third, detecting specific forms of non-linearities
 - Threshold effects?
 - U- or S-shaped trends?
• Finally, more complex models

– When the scientific question relates to prediction, it is imperative that the regression model accurately reflects the true relationship between predictors and the summary measure of response
 • Failure to have the correct model will guarantee that some groups may not have the correct predicted response

– When the scientific question relates to detection of associations, the importance of having the true model depends on the statistical role of the predictor
 • With the predictor of interest, the most important issues is to protect the validity of the statistical inference
 ∙ Data driven decision will inflate the type I error rate

 • With precision variables, it is not as crucial that the true relationship be modeled
 ∙ An approximate model will provide most of the precision gains

 • With confounders, failure to accurately model the relationship between the confounder and the response may lead to residual confounding
 ∙ Sometimes will use very flexible models for continuous confounders (e.g. fractional polynomials)

– As the goal of any analysis is to communicate findings to the greater scientific community, it is also important that modeling of predictors is easy to understand
 • This is an issue that matters most for your predictor of interest

 • We are generally not worried about making inference about precision variables or confounders

• Statistical issues
The greatest statistical precision will be gained when the model reflects the true relationship between the predictor and the response:

- Accurate modeling of the relationship will avoid introducing systematic error in the estimates of the standard errors.

- Parsimony: Using the fewest parameters to model the relationship will allow greater precision.

- Precision is a trade-off between parsimony and increased accuracy from including more parameters.

We should select the form of modeling the predictor before looking at the data:

- Data drive selection of transformations will tend to lead to inaccurate (anti-conservative) statistical inference.

- Overfitting of the data leads to spuriously low estimates of the within group variability.
 - Thus standard errors estimates are too low.
 - Type-I errors are inflated.
 - Confidence interval are too narrow (inaccurate coverage probabilities).

- Data-driven model selection will also lead to coefficient estimates that are biased away from the null (leading you to overstate your scientific effects).
13.4 Example: Beta Carotene Supplements

13.4.1 Overview

- Before doing large scale clinical trials, it is important to understand the pharmacokinetics of a drug

- Phase II prevention trials often administer a drug in various doses to volunteers, and pertinent plasma levels are then measured at regular intervals

- Of particular interest is how dose level affects the build up of drug in the plasma over time, as well as how the dose level might affect other blood chemistries

- Forty-six (46) volunteers were randomly assigned to receive one of five doses of beta-carotene (0, 15, 30, 45, or 60 mg/day) for 9 months in a double blind fashion

- The specific aim was to determine how different dose levels affected the serum beta-carotene levels after 9 months

- Other measured variables available in this data set include subject age, sex, weight, body mass index, percent body fat, and serum cholesterol level at baseline
. tabstat carot3, by(dose) stat(n mean sd min q max)

Summary for variables: carot3
by categories of: dose (dose)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>186.3214</td>
<td>87.79767</td>
<td>84.5</td>
<td>126</td>
<td>149</td>
<td>286</td>
<td>323</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>1253.583</td>
<td>570.4673</td>
<td>576.75</td>
<td>695.375</td>
<td>1250</td>
<td>1771.208</td>
<td>2018.75</td>
</tr>
<tr>
<td>30</td>
<td>9</td>
<td>1504.611</td>
<td>479.0258</td>
<td>849.3333</td>
<td>1157.333</td>
<td>1498.5</td>
<td>1840</td>
<td>2248.5</td>
</tr>
<tr>
<td>45</td>
<td>7</td>
<td>1749.081</td>
<td>579.049</td>
<td>950.25</td>
<td>993</td>
<td>1848.25</td>
<td>2247.667</td>
<td>2310.4</td>
</tr>
<tr>
<td>60</td>
<td>9</td>
<td>1877.63</td>
<td>429.8801</td>
<td>1233.333</td>
<td>1724.667</td>
<td>1865</td>
<td>1917.667</td>
<td>2855</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>1350.416</td>
<td>734.4823</td>
<td>84.5</td>
<td>799.6667</td>
<td>1528.917</td>
<td>1914.667</td>
<td>2855</td>
</tr>
</tbody>
</table>

In this randomized trial, we can consider several potential response variables

- Plasma level at the end of treatment

- Change in plasma level over the treatment period

- Either of the above adjusted for baseline plasma (ANCOVA model)

Accounting for baseline

- Dose group i, subject j, time t

- $Y_{ijt} \sim (\mu_{it}, \sigma^2)$; corr($Y_{ij0}, Y_{ij9}$) = ρ

\[
\begin{align*}
\bar{Y}_{i.9} & \sim (\mu_{i9}, \sigma^2/n) \\
\bar{Y}_{i.9} - \bar{Y}_{i.0} & \sim (\mu_{i9} - \mu_{i0}, 2\sigma^2(1 - \rho)/n) \\
Y_{i.9} - \rho\bar{Y}_{i.0} & \sim (\mu_{i9} - \rho\mu_{i0}, \sigma^2(1 - \rho^2)/n)
\end{align*}
\]

- Compared variances of the above three equations
 * When are the variances equal, smaller, larger

 * Which is always smallest
CHAPTER 13. MODEL CHOICE IN MULTIPLE REGRESSION

- By randomization, there will be equal means at baseline
 - $\mu_{T,0} = \mu_{P,0}$ where T is any of the treatment doses and P is placebo

- Contrast across dose groups
 \[
 \begin{align*}
 \overline{Y}_{T,9} - \overline{Y}_{P,9} & \sim (\mu_{T,9} - \mu_{P,9}, 2\sigma^2 / n) \\
 (\overline{Y}_{T,9} - \overline{Y}_{T,0}) - (\overline{Y}_{P,9} - \overline{Y}_{P,0}) & \sim (\mu_{T,9} - \mu_{P,9}, 4\sigma^2(1 - \rho)/n) \\
 (\overline{Y}_{T,9} - \rho\overline{Y}_{T,0}) - (\overline{Y}_{P,9} - \rho\overline{Y}_{P,0}) & \sim (\mu_{T,9} - \mu_{P,9}, 2\sigma^2(1 - \rho^2)/n)
 \end{align*}
 \]

- Simple linear regression
 - Regress Y on X
 \[
 \begin{align*}
 * Y_i & \sim (\mu_Y, \sigma_Y^2); X_i \sim (\mu_X, \sigma_X^2) \\
 * \text{corr}(Y_i, X_i) &= \rho \\
 * \beta_0 &= \mu_Y - \beta_1\mu_X \\
 * \beta_1 &= \rho \frac{\sigma_Y}{\sigma_X}
 \end{align*}
 \]

- Analysis of Covariance
 - Dose group i, subject j, time t
 \[
 \begin{align*}
 * Y_{ijt} & \sim (\mu_{it}, \sigma^2); \text{corr}(Y_{ij0}, Y_{ij9}) = \rho \\
 \end{align*}
 \]

 - Regression model: $E[Y_{ij9}|Y_{ij0}] = \beta_0 + \beta_1Y_{ij0}$
 \[
 \begin{align*}
 * \beta_1 &= \rho \\
 \end{align*}
 \]

13.4.2 Methods for modeling dose response

- In a randomized clinical trial, we will tend to have the greatest precision if we adjust for baseline as a predictor in a linear regression model
A wide variety of models may be considered for examining the relationship between dose and plasma levels

- Dummy variables where we model each dose level independently, without borrowing information across groups (ANOVA)

- Linear continuous predictors (transformed or untransformed)

- Dichotomization (at any of several thresholds)

- Polynomials, splines, other flexible methods

- Combinations of the above

- Even more complex models

I will compare possible models

- Graphically: Show data and fitted values without adjustment for baseline

- Numerically: Show regression estimates and tests after adjustment for baseline

- Note that this is an academic exercise and not something you would do in practice to come up with the “best” model

Predicted values

- After computing a regression command, Stata will provide predicted values for each case

 * Mathematically, this is just the intercept plus the regression parameters multiplied by the covariates for each case

 * Stata command: predict varname
13.4.3 ANOVA analysis

- Fits each group independently

- Does not use the ordering of the dose groups when looking for an effect
 - Completely ignores the magnitude and ordering of the x-axis

- A priori, we might expect this is not the most efficient method if the alternative hypothesis is true
 - We expect larger plasma levels with increasing dose
 - We will thus have less power to detect a first-order trend

```
.xi: regress carot3 i.dose carot0, robust
i.dose   _Idose_0-60 (naturally coded; _Idose_0 omitted)

Linear regression
        Number of obs =        40
       F(    5,    34) =     47.68
       Prob > F      =    0.0000
       R-squared    =     0.7184
       Root MSE     =     417.46

------------------------------------------------------------------------------
       | Robust
     carot3 | Coef.  Std. Err.    t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   _Idose_15  | 1224.19   213.56    5.73  0.000     790.19   1658.20
   _Idose_30  | 1439.84   155.80    9.24  0.000    1123.22   1756.47
   _Idose_45  | 1679.00   167.15   10.04  0.000    1339.30   2018.71
   _Idose_60  | 1791.01   152.95   11.71  0.000    1480.19   2101.83
    carot0   |  1.9028   0.5370    3.54  0.001     0.8115   2.9942
    _cons   | -361.45   167.54   -2.16  0.038    -701.94   -20.96
------------------------------------------------------------------------------
```
Model: Dummy Variables (ANOVA)

Fitted
Group Means
CHAPTER 13. MODEL CHOICE IN MULTIPLE REGRESSION

· Testing for the dose effect

 – We must use the _testparm command (or test) because the model includes the baseline measurement

 – _testparm is similar to test, but allows testing multiple parameters using wildcards

```
. testparm _I*

  ( 1) _Idose_15 = 0
  ( 2) _Idose_30 = 0
  ( 3) _Idose_45 = 0
  ( 4) _Idose_60 = 0

      F(  4,  34) =  59.47
      Prob > F =    0.0000
```

· We would have had the same fitted values (and thus inference) if we had decided to drop a different dose group

 – Example: Making my own dummy variables for dose, with dose at 60 being the reference group

```
. regress carot3 dose0 dose15 dose30 dose45 carot0, robust

Linear regression                     Number of obs =      40
                                  F(  5,  34) =    47.68
                                  Prob > F    =  0.0000
                                  R-squared   =    0.7184
                                  Root MSE    =  417.46

------------------------------------------------------------------------------
            | Robust             Coef.  Std. Err.     t    P>|t|     [95% Conf. Interval]
-------------+------------------------------------------------------------------
      carot3  |                  -1791.009   152.946   -11.71  0.000    -2101.833   -1480.185
     dose0   |                  -566.8194  240.2233   -2.36   0.024    -1055.012   -78.62694
     dose15  |                  -351.1717  188.5790   -1.86   0.071    -734.4104   32.067
     dose30  |                  -112.0251  204.5116   -0.55   0.587    -527.6427   303.5925
     dose45  |                   1.902792   0.537001    3.54  0.001       .8114738   2.99411
      carot0  |                  1429.557   176.8189    8.08   0.000       1070.218   1788.896
     _cons   |                  1429.557   176.8189    8.08   0.000       1070.218   1788.896
------------------------------------------------------------------------------
```

· Note that the parameter estimates all will lead to the same fitted values
– e.g. Intercept in above model (1430) equals the intercept + dose60 coefficient (-361 + 1791) in previous model

• Overall F statistics, R-squared, Root MSE all the same

• Partial t-tests tend to differ as we are making comparisons to different reference groups

• Could also fit the same model with no intercept
 – Would then have to include all five dose groups
 – We can get Stata to include fit all five dose groups and no intercept using the \texttt{noconstant} option
 – In R, fit a model without an intercept by adding a \(-1\) in the model equation (e.g. \(y \sim -1 + x\))
 – Not including the intercept changes the overall F statistic and the R-squared measures

```stata
. regress carot3 dose0 dose15 dose30 dose45 dose60 carot0, robust noconstant
```

| carot3 | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |}
|--------|-------|-----------|------|-----|---------------------|}
| dose0 | -361.4516 | 167.5432 | -2.16 | 0.038 | -701.9404 -20.96284 |}
| dose15 | 862.7379 | 241.9456 | 3.57 | 0.001 | 371.0453 1354.431 |}
| dose30 | 1078.386 | 178.9827 | 6.03 | 0.000 | 714.6491 1442.122 |}
| dose45 | 1317.532 | 223.2838 | 5.90 | 0.000 | 863.7649 1771.3 |}
| dose60 | 1429.557 | 176.8189 | 8.08 | 0.000 | 1070.218 1788.896 |}
| carot0 | 1.902792 | .5370015 | 3.54 | 0.001 | .8114738 2.99411 |}
• Correspondence of the no-intercept model compared to previous models
 – Some textbooks refer to this as a “cell means” coding system
 * If we didn’t have baseline beta carotene in the model, the dose parameters would correspond directly to the means in each dose group
 * With baseline beta carotene in the model, the dose parameters are the means when carot0 is 0
 – In terms of model fit, the model is the same as before
 * No intercept means each dose group is compared to a mean of 0
 – Fitted values will be the same
 – Test of dose effect will need to test equality of all five dose covariates
 * This is not a test that these 5 parameters are 0
 * \(H_0 : \text{dose}0 = \text{dose}15 = \text{dose}30 = \text{dose}45 = \text{dose}60 \)
 * \(H_1 : \) at least one of the above is not equal

 . test dose0=dose15=dose30=dose45=dose60

 (1) dose0 - dose15 = 0
 (2) dose0 - dose30 = 0
 (3) dose0 - dose45 = 0
 (4) dose0 - dose60 = 0

 \(F(4, 34) = 59.47 \)
 Prob > F = 0.0000

• Difference in interpretation of the no-intercept model to previous models
 – Overall F statistic
 * Test removing all covariates, leaving a mean 0
 – Multiple R squared
∗ “Percent of explained variation”

∗ With intercept, compares to variance around overall mean

∗ Without intercept, compares to variance about 0

13.4.4 Binary dose: Placebo versus Active

· Dichotomize into dose 0 versus dose > 0
 – Will be an accurate model if all (or virtually all) of the effect is attained at the lowest dose level
 – Often used when little is know about a treatment, or when dose is difficult to quantify
 ∗ e.g. Smoking

∗ We are relatively certain of a smoking effect, so our major scientific interest is likely related to the dose-response relationship above the lowest dose

. regress carot3 trt carot0, robust

Linear regression

Number of obs = 40
F(2, 37) = 84.00
Prob > F = 0.0000
R-squared = 0.6434
Root MSE = 450.3

--
| Robust
| carot3 | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
--
trt	1544.22	120.0337	12.86	0.000	1301.009	1787.432
carot0	2.059907	.7091411	2.90	0.006	.6230503	3.496763
_cons	-406.6816	215.3205	-1.89	0.067	-842.9623	29.59913
--
Model: Dichotomous Dose

- X Fitted
- ○ Group Means

Plasma Beta Carotene

Dose of Supplementation

0 10 20 30 40 50 60

0 500 1000 1500 2000 2500
13.4.5 Linear, continuous dose

- Estimates the best fitting straight line to response
 - Accurate if the response is linear

- Often used when little is known about the treatment and a general trend is expected
 - In this particular application, we are relatively certain of an effect, so our major interest is in modeling the dose response relationship above 0.

```
. regress carot3 dose carot0, robust
Linear regression
Number of obs = 40
F( 2, 37) = 25.47
Prob > F = 0.0000
R-squared = 0.5622
Root MSE = 498.94

------------------------------------------------------------------------------
| Robust
|     | Coef.  | Std. Err. | t    | P>|t|   | 95% Conf. Interval |
-------------+------------------------------------------------------------------
  carot3 |  dose | 25.46276 | 3.632547 | 7.01 | 0.000 | 18.10252  32.823 
         |  carot0 | 1.334088  | 0.657003 | 2.03 | 0.050 | 0.0028737 2.665303
         |    _cons | 245.0003  | 222.814  | 1.10 | 0.279 | -206.4638 696.4644
------------------------------------------------------------------------------
```

- To test the treatment effect, could either use the `test` command for dose or use the output directly as we are only testing one parameter.
Model: Linear Dose

![Graph showing data points and fitted line for plasma beta carotene vs. dose of supplementation. The graph includes points marked as X for fitted values and O for group means.]
13.4.6 Polynomial models of dose

- Fit terms involving dose, dose squared
 - Often used to fit U-shaped trends
 - In general, a quadratic is a pretty strong assumption in that it assumes constant curvature over dose

```
. regress carot3 dose dosesqr carot0, robust
```

```
Linear regression
Number of obs = 40
F( 3, 36) = 59.30
Prob > F = 0.0000
R-squared = 0.6824
Root MSE = 430.81

------------------------------------------------------------------------------
| Robust
| carot3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dose | 67.14673 8.207062 8.18 0.000 50.50203 83.79142
dosesqr | -.6723087 .1451496 -4.63 0.000 -.9666857 -.3779317
carot0 | 1.728068 .5638738 3.06 0.004 .5844789 2.871657
_cons | -195.5986 179.34 -1.09 0.283 -559.3169 168.1197
------------------------------------------------------------------------------
```
CHAPTER 13. MODEL CHOICE IN MULTIPLE REGRESSION

Model: Quadratic Dose

\[\text{Model: Quadratic Dose} \]

\[\text{X} \quad \text{Fitted} \]

\[\text{Group Means} \]

\[\text{Plasma Beta Carotene} \]

\[\text{Dose of Supplementation} \]

0 10 20 30 40 50 60

0 500 1000 1500 2000 2500
The partial t-test for dosesqr can be interpreted as a test for linear dose response
- It is highly significant, suggesting departure from linearity

To test the treatment effect, we need to test the two dose covariates

```
. test dose dosesqr
   ( 1) dose = 0
   ( 2) dosesqr = 0

F( 2, 36) = 84.56
Prob > F = 0.0000
```

13.4.7 Highest order polynomial models versus ANOVA

- With 5 discrete dose levels, a 4th degree polynomial will fit the means exactly

- Thus, the model will have the same fit as the ANOVA model using dummy variables for each levels of dose
 - Higher order polynomials are borrowing less information across dose groups
 - Highest order polynomial borrows no information across dose groups
. gen dosecub = dose^3
. gen dosequad = dose^4
. regress carot3 dose dosesqr dosecub dosequad carot0, robust

Linear regression
Number of obs = 40
F(5, 34) = 47.68
Prob > F = 0.0000
R-squared = 0.7184
Root MSE = 417.46

--
 | Robust
| carot3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
dose | 157.876 61.94333 2.55 0.015 31.99197 283.7599
dosesqr | -6.943752 5.066692 -1.37 0.180 -17.24051 3.353004
dosecub | .1385695 .1313523 1.05 0.299 -.1283706 .4055096
dosequad | -.0009734 .0010718 -0.91 0.370 -.0031515 .0012047
carot0 | 1.902792 .5370015 3.54 0.001 .8114738 2.99411
_cons | -361.4516 167.5432 -2.16 0.038 -701.9404 -20.96284
--

. xi: regress carot3 i.dose carot0, robust
i.dose _Idose_0-60 (naturally coded; _Idose_0 omitted)

Linear regression
Number of obs = 40
F(5, 34) = 47.68
Prob > F = 0.0000
R-squared = 0.7184
Root MSE = 417.46

--
 | Robust
| carot3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
_Idose_15 | 1224.19 213.5586 5.73 0.000 790.1863 1658.193
_Idose_30 | 1439.837 155.7948 9.24 0.000 1123.224 1756.45
_Idose_45 | 1678.984 167.1502 10.04 0.000 1339.294 2018.674
_Idose_60 | 1791.009 152.946 11.71 0.000 1480.185 2101.833
carot0 | 1.902792 .5370015 3.54 0.001 .8114738 2.99411
_cons | -361.4516 167.5432 -2.16 0.038 -701.9404 -20.96284
--

13.4.8 Threshold at 0 and Linear Term

· Threshold at 0 and linear dose

· To fit, use a dummy variable for dose0 plus dose (continuous)
– Fits dose 0 by its group mean

– Fits dose > 0 by a line (an intercept and slope)

– Allows us to address two scientific questions
 * Is there any effect of dose? (test both slopes)

 * Is there any additional benefit beyond the lowest dose? (test linear term’s slope)

```
.regress carot3 trt dose carot0, robust
```

```
Linear regression
Number of obs = 40
F( 3, 36) = 81.26
Prob > F = 0.0000
R-squared = 0.7170
Root MSE = 406.69

------------------------------------------------------------------------------
carot3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
  trt | 1050.836 223.418 4.70 0.000 597.7237 1503.949
  dose | 12.81144 4.794314 2.67 0.011 3.088122 22.53476
  carot0 | 1.904584 .5164903 3.69 0.001 .8570932 2.952075
   _cons | -361.9675 161.4254 -2.24 0.031 -689.3534 -34.58168
------------------------------------------------------------------------------
```
Model: Threshold and Linear Dose

- X Fitted
- O Group Means

Dose of Supplementation vs. Plasma Beta Carotene
· Testing the effect of treatment
 – Two variables model dose, so we need to test both

 – If response increases from dose 0 to lowest dose OR

 – ... response increases as dose increase, THEN

 – ... we will declare an effect of treatment

· The partial t-test for the \text{trt} term can be used to test for linear dose response
 – Here, it is highly significantly different from 0, indicating that just a linear model is not adequate

· The partial t-test for the \text{dose} term can be interpreted as a test for any added effect above the lowest dose
 – It is significantly different from 0 \((p = 0.011)\)

 – There is a multiple comparison issue here, but many people are comfortable doing this 'step down' test after they have already tested from any treatment effect

\texttt{. test trt dose}

\begin{verbatim}
(1) \text{trt} = 0
(2) \text{dose} = 0
\end{verbatim}

\begin{verbatim}
\text{F}(2, \text{ 36}) = 121.88
\text{Prob > F} = 0.0000
\end{verbatim}
13.5 Data driven model selection

· Suppose we look at a scatterplot before deciding which model we fit and choose a model that can fit the data well
 – If the data looks like a straight line, choose the model linear in dose
 – If the data looks like a U, choose a quadratic
 – If the data is a complicated pattern of differences among groups, we might choose dummy variables or splines
 – etc.

· This approach would tend to mimic the behavior of fitting several different models and choosing the model with the lowest p-value
 – When our eye sees some trend in the data, we would be most likely to pick the model giving the lowest p-value

13.5.1 Simulation

· Using the 46 subjects in this dataset, I can randomly permute the dose they received
 – Effectively, randomize subjects to a different dose
 – But, keep their 9-month and baseline beta carotene levels the same (not permuted)
 * Should remove any association between dose and beta carotene

· Next, fit each of the five models (linear, quadratic, ANOVA, dichotomized, and dichotomized plus linear)

· Repeat the process 1000 times (representing 1000 studies)
– Calculate how often each model rejects the null hypothesis of a dose effect

• Individual Model Results

 – Empirical type I error for each method of analysis individually

<table>
<thead>
<tr>
<th>Model</th>
<th>Emp. Type-I error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>0.049</td>
</tr>
<tr>
<td>Linear</td>
<td>0.046</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.046</td>
</tr>
<tr>
<td>Dichotomized</td>
<td>0.050</td>
</tr>
<tr>
<td>Dichot + linear</td>
<td>0.041</td>
</tr>
</tbody>
</table>

• Multiple comparison issues

 – With 5 hypothesis tests at a nominal 0.05 level, experiment-wise error rate is at most 0.25 (0.05 × 5)

 – Worst-case assumes that all tests are mutually exclusive
 * e.g. If the linear dose-response model is significant, no other model is more likely to be significant

 * In fact, the tests will be correlated

 – How many of the 1000 simulated trials had at least on model with a p-value < 0.05?
 * From the simulation, I found this to be 122 or 12.2%

 * Note that there is error in this estimate (due to the simulation randomness)
 * 95% CI: [10.2%, 14.2%]

• General statistical issues
– The true type 1 error rate for such data driven analyses will depend on several factors
 * The number of tests performed
 * The models considered
 · Similar models will tend to reject the null hypotheses on the same dataset
 * The distribution of the data
 · In particular, heavy tailed distributions decreases the concordance between the tests

• When you have multiple models you are considering, the conclusions are less strong
 – The p-values (or other metrics) can still be useful in ordering the associations

 – Among all of the models considered, it appears as if SNP X is the most strongly associated with CVD
 * Would be useful to put a CI around this ranking as well

13.5.2 Post hoc adjustments for multiple comparisons

• In frequentist reasoning, we try to ensure that our error rate is held at some level α
 – When only considering one decision, this is relatively easy

 – When making multiple decisions, we must consider the experiment-wise error rate

• In the worst case scenario, an error rate of α one each decision could lead to an experiment-wise error rate that is as high as $k \times \alpha$
– Such would be the case if all of our errors were mutually exclusive

• If all error were independent of each other, then the experiment-wise error rate is
 \[1 - (1 - \alpha)^k \]

• Experiment-wise error rates ($\alpha = 0.05$ at each decision)

<table>
<thead>
<tr>
<th>Number of Comparisons</th>
<th>Worst Case Scenario Errors</th>
<th>Independent Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>2</td>
<td>0.1000</td>
<td>0.0975</td>
</tr>
<tr>
<td>3</td>
<td>0.1500</td>
<td>0.1426</td>
</tr>
<tr>
<td>5</td>
<td>0.2500</td>
<td>0.2262</td>
</tr>
<tr>
<td>10</td>
<td>0.5000</td>
<td>0.4013</td>
</tr>
<tr>
<td>20</td>
<td>1.0000</td>
<td>0.6415</td>
</tr>
<tr>
<td>50</td>
<td>1.0000</td>
<td>0.9231</td>
</tr>
</tbody>
</table>

• When making multiple comparison which all tend address the same scientific question, we may adjust our level of significance to protect the experiment-wise error rate
 – The problem with this approach is does not adjust for any bias in parameter estimates

• Bonferroni Correction
 – Assumes the worst case scenario
 – When making k comparisons, either
 * Tests individual p-values against $\frac{\alpha}{k}$
 * Multiply p-values by k and compare to α (keeping the p-values < 1)

• Bonferroni is easy and it can be applied in all settings
– Extremely conservative when the statistics from various tests are positively correlated

• Many other varieties of adjusting after performing multiple comparisons
 – Tukey, Scheffe, etc.

– None are great

– Did they really adjust for all of the comparisons they made? Probably not.

– My strong preference is to avoid multiple comparisons in the first place
 * If there was some model fitting involved to get to the final model, acknowledge that fact in the paper

 * Understand the science

 * Avoid data-driven approaches when you care about correct statistical inference (CIs and p-values)